IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v83y1998i1-2p239-262.html
   My bibliography  Save this article

Finite sample moments results for the quasi-FIML estimator of the reduced form: The linear case

Author

Listed:
  • McCarthy, Michael D.

Abstract

No abstract is available for this item.

Suggested Citation

  • McCarthy, Michael D., 1998. "Finite sample moments results for the quasi-FIML estimator of the reduced form: The linear case," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 239-262.
  • Handle: RePEc:eee:econom:v:83:y:1998:i:1-2:p:239-262
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(97)00071-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bianchi, Carlo & Calzolari, Giorgio, 1982. "Evaluating forecast uncertainty due to errors in estimated coefficients: empirical comparison of alternative methods," MPRA Paper 22559, University Library of Munich, Germany.
    2. White, Halbert, 1982. "Instrumental Variables Regression with Independent Observations," Econometrica, Econometric Society, vol. 50(2), pages 483-499, March.
    3. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    4. Dhrymes, Phoebus J, 1973. "Restricted and Unrestricted Reduced Forms: Asymptotic Distribution and Relative Efficiency," Econometrica, Econometric Society, vol. 41(1), pages 119-134, January.
    5. McCarthy, Michael D, 1972. "A Note on the Forecasting Properties of Two Stage Least Squares Restricted Reduced Forms-The Finite Sample Case," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 757-761, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calzolari, Giorgio & Panattoni, Lorenzo, 1984. "Evaluating Forecast Uncertainty in Econometric Models: The Effect of Alternative Estimators of Maximum Likelihood Covariance Matrix," MPRA Paper 28806, University Library of Munich, Germany.
    2. Nour Meddahi & Eric Renault, 1998. "Quadratic M-Estimators for ARCH-Type Processes," CIRANO Working Papers 98s-29, CIRANO.
    3. Calzolari, Giorgio & Bianchi, Carlo & Corsi, Paolo & Panattoni, Lorenzo, 1982. "Uncertainty of policy recommendations for nonlinear econometric models: some empirical results," MPRA Paper 28846, University Library of Munich, Germany.
    4. Bianchi, Carlo & Calzolari, Giorgio & Brillet, Jean-Louis, 1987. "Measuring forecast uncertainty : A review with evaluation based on a macro model of the French economy," International Journal of Forecasting, Elsevier, vol. 3(2), pages 211-227.
    5. Huang, Kuo S., 1985. "Measurim The Covariance Matrices Of Restricted Reduced Form Coefficients With Small Size Computers," 1985 Annual Meeting, August 4-7, Ames, Iowa 278635, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Ian Domowitz, 1985. "New Directions in Non-linear Estimation with Dependent Observations," Canadian Journal of Economics, Canadian Economics Association, vol. 18(1), pages 1-27, February.
    7. Bianchi, Carlo & Calzolari, Giorgio, 1983. "Standard errors of forecasts in dynamic simulation of nonlinear econometric models: some empirical results," MPRA Paper 22657, University Library of Munich, Germany, revised 1983.
    8. Giuliani, Elisa & Martinelli, Arianna & Rabellotti, Roberta, 2016. "Is Co-Invention Expediting Technological Catch Up? A Study of Collaboration between Emerging Country Firms and EU Inventors," World Development, Elsevier, vol. 77(C), pages 192-205.
    9. Bruinshoofd Allard & Kool Clemens, 2002. "The Determinants of Corporate Liquidity in the Netherlands," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    10. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    11. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    12. Dionne, Georges, 1998. "La mesure empirique des problèmes d’information," L'Actualité Economique, Société Canadienne de Science Economique, vol. 74(4), pages 585-606, décembre.
    13. Thomas, Duncan & Strauss, John, 1997. "Health and wages: Evidence on men and women in urban Brazil," Journal of Econometrics, Elsevier, vol. 77(1), pages 159-185, March.
    14. Roselinde Kessels & Guido Erreygers, 2016. "Structural equation modeling for decomposing rank-dependent indicators of socioeconomic inequality of health: an empirical study," Health Economics Review, Springer, vol. 6(1), pages 1-13, December.
    15. Emilie Alberola & Julien Chevallier & Benoît Chèze, 2008. "The EU Emissions Trading Scheme : Disentangling the Effects of Industrial Production and CO2 Emissions on Carbon Prices," Working Papers hal-04140795, HAL.
    16. Czarnitzki, Dirk & Doherr, Thorsten & Hussinger, Katrin & Schliessler, Paula & Toole, Andrew A., 2016. "Knowledge Creates Markets: The influence of entrepreneurial support and patent rights on academic entrepreneurship," European Economic Review, Elsevier, vol. 86(C), pages 131-146.
    17. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    18. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    19. Blazsek, Szabolcs & Licht, Adrian, 2018. "Seasonal quasi-vector autoregressive models for macroeconomic data," UC3M Working papers. Economics 26316, Universidad Carlos III de Madrid. Departamento de Economía.
    20. Bronwyn H. Hall & Zvi Griliches & Jerry A. Hausman, 1984. "Patents and R&D: Is There A Lag?," NBER Working Papers 1454, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:83:y:1998:i:1-2:p:239-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.