IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v240y2024i1s0304407623003639.html
   My bibliography  Save this article

Locally robust inference for non-Gaussian linear simultaneous equations models

Author

Listed:
  • Lee, Adam
  • Mesters, Geert

Abstract

All parameters in linear simultaneous equations models can be identified (up to permutation and sign) if the underlying structural shocks are independent and at most one of them is Gaussian. Unfortunately, existing inference methods that exploit such identifying assumptions suffer from size distortions when the true distributions of the shocks are close to Gaussian. To address this weak non-Gaussian problem we develop a locally robust semi-parametric inference method which is simple to implement, improves coverage and retains good power properties. The finite sample properties of the methodology are illustrated in a large simulation study and an empirical study for the returns to schooling.

Suggested Citation

  • Lee, Adam & Mesters, Geert, 2024. "Locally robust inference for non-Gaussian linear simultaneous equations models," Journal of Econometrics, Elsevier, vol. 240(1).
  • Handle: RePEc:eee:econom:v:240:y:2024:i:1:s0304407623003639
    DOI: 10.1016/j.jeconom.2023.105647
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407623003639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2023.105647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Helmut Herwartz, 2019. "Long‐run neutrality of demand shocks: Revisiting Blanchard and Quah (1989) with independent structural shocks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 811-819, August.
    2. Hansen, Christian & McDonald, James B. & Newey, Whitney K., 2010. "Instrumental Variables Estimation With Flexible Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 13-25.
    3. Andrews, Donald W. K., 1987. "Asymptotic Results for Generalized Wald Tests," Econometric Theory, Cambridge University Press, vol. 3(3), pages 348-358, June.
    4. Drautzburg, Thorsten & Wright, Jonathan H., 2023. "Refining set-identification in VARs through independence," Journal of Econometrics, Elsevier, vol. 235(2), pages 1827-1847.
    5. Gouriéroux, Christian & Monfort, Alain & Renne, Jean-Paul, 2017. "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, Elsevier, vol. 196(1), pages 111-126.
    6. Timothy Erickson & Toni M. Whited, 2000. "Measurement Error and the Relationship between Investment and q," Journal of Political Economy, University of Chicago Press, vol. 108(5), pages 1027-1057, October.
    7. Eleonora Granziera & Hyungsik Roger Moon & Frank Schorfheide, 2018. "Inference for VARs identified with sign restrictions," Quantitative Economics, Econometric Society, vol. 9(3), pages 1087-1121, November.
    8. Magnus, Jan R. & Pijls, Henk G.J. & Sentana, Enrique, 2021. "The Jacobian of the exponential function," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    9. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    10. Tetsuya Kaji, 2021. "Theory of Weak Identification in Semiparametric Models," Econometrica, Econometric Society, vol. 89(2), pages 733-763, March.
    11. Carlos Velasco, 2023. "Identification and Estimation of Structural VARMA Models Using Higher Order Dynamics," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 819-832, July.
    12. Geert Bekaert & Eric Engstrom & Andrey Ermolov, 2020. "Aggregate Demand and Aggregate Supply Effects of COVID-19: A Real-time Analysis," Finance and Economics Discussion Series 2020-049, Board of Governors of the Federal Reserve System (U.S.).
    13. Benjamin B. Risk & David S. Matteson & David Ruppert, 2019. "Linear Non-Gaussian Component Analysis Via Maximum Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 332-343, January.
    14. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    15. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    16. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    17. Donald W. K. Andrews & Patrik Guggenberger, 2015. "Identification- and Singularity-Robust Inference for Moment Condition," Cowles Foundation Discussion Papers 1978, Cowles Foundation for Research in Economics, Yale University.
    18. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    19. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    20. Lanne, Markku & Lütkepohl, Helmut & Maciejowska, Katarzyna, 2010. "Structural vector autoregressions with Markov switching," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 121-131, February.
    21. Fiorentini, Gabriele & Sentana, Enrique, 2023. "Discrete mixtures of normals pseudo maximum likelihood estimators of structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 235(2), pages 643-665.
    22. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    23. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j01si09a2 is not listed on IDEAS
    24. Lanne, Markku & Lütkepohl, Helmut, 2010. "Structural Vector Autoregressions With Nonnormal Residuals," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 159-168.
    25. Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2021. "Macro risks and the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 141(2), pages 479-504.
    26. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    27. Ananda Sen, 2012. "On the Interrelation Between the Sample Mean and the Sample Variance," The American Statistician, Taylor & Francis Journals, vol. 66(2), pages 112-117, May.
    28. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    29. Richard Davis & Serena Ng, 2021. "Time Series Estimation of the Dynamic Effects of Disaster-Type Shock," Papers 2107.06663, arXiv.org, revised Mar 2022.
    30. Donald W. K. Andrews & Patrik Guggenberger, 2019. "Identification‐ and singularity‐robust inference for moment condition models," Quantitative Economics, Econometric Society, vol. 10(4), pages 1703-1746, November.
    31. Isaiah Andrews & Anna Mikusheva, 2015. "Maximum likelihood inference in weakly identified dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 6(1), pages 123-152, March.
    32. José Luis Montiel Olea & Carolin Pflueger, 2013. "A Robust Test for Weak Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 358-369, July.
    33. Herwartz, Helmut & Lange, Alexander & Maxand, Simone, 2019. "Statistical identification in SVARs - Monte Carlo experiments and a comparative assessment of the role of economic uncertainties for the US business cycle," University of Göttingen Working Papers in Economics 375, University of Goettingen, Department of Economics.
    34. Alessio Moneta & Doris Entner & Patrik O. Hoyer & Alex Coad, 2013. "Causal Inference by Independent Component Analysis: Theory and Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(5), pages 705-730, October.
    35. Markku Lanne & Jani Luoto, 2021. "GMM Estimation of Non-Gaussian Structural Vector Autoregression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 69-81, January.
    36. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2012. "Optimal inference for instrumental variables regression with non-Gaussian errors," Journal of Econometrics, Elsevier, vol. 167(1), pages 1-15.
    37. E. J. Working, 1927. "What Do Statistical "Demand Curves" Show?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 41(2), pages 212-235.
    38. David S. Matteson & Ruey S. Tsay, 2017. "Independent Component Analysis via Distance Covariance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 623-637, April.
    39. Isaiah Andrews & Anna Mikusheva, 2022. "Optimal Decision Rules for Weak GMM," Econometrica, Econometric Society, vol. 90(2), pages 715-748, March.
    40. Dagenais, Marcel G. & Dagenais, Denyse L., 1997. "Higher moment estimators for linear regression models with errors in the variables," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 193-221.
    41. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    42. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    43. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j01si09a2 is not listed on IDEAS
    44. A Tank & E B Fox & A Shojaie, 2019. "Identifiability and estimation of structural vector autoregressive models for subsampled and mixed-frequency time series," Biometrika, Biometrika Trust, vol. 106(2), pages 433-452.
    45. Kapteyn, Arie & Wansbeek, Tom, 1983. "Identification in the Linear Errors in Variables Model," Econometrica, Econometric Society, vol. 51(6), pages 1847-1849, November.
    46. Moneta, Alessio & Pallante, Gianluca, 2022. "Identification of Structural VAR Models via Independent Component Analysis: A Performance Evaluation Study," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    47. Lutkepohl, Helmut & Burda, Maike M., 1997. "Modified Wald tests under nonregular conditions," Journal of Econometrics, Elsevier, vol. 78(2), pages 315-332, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Luis Montiel Olea & Mikkel Plagborg-Møller & Eric Qian, 2022. "SVAR Identification from Higher Moments: Has the Simultaneous Causality Problem Been Solved?," AEA Papers and Proceedings, American Economic Association, vol. 112, pages 481-485, May.
    2. Gabriele Fiorentini & Alessio Moneta & Francesca Papagni, 2024. "Identification of one independent shock in structural VARs," LEM Papers Series 2024/28, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandts, Jordi & El Baroudi, Sabrine & Huber, Stefanie J. & Rott, Christina, 2021. "Gender differences in private and public goal setting," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 222-247.
    2. Lukas Hoesch & Adam Lee & Geert Mesters, 2022. "Robust inference for non-Gaussian SVAR models," Economics Working Papers 1847, Department of Economics and Business, Universitat Pompeu Fabra.
    3. Lukas Hoesch & Adam Lee & Geert Mesters, 2022. "Locally Robust Inference for Non-Gaussian SVAR Models," Working Papers 1367, Barcelona School of Economics.
    4. Fiorentini, Gabriele & Sentana, Enrique, 2023. "Discrete mixtures of normals pseudo maximum likelihood estimators of structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 235(2), pages 643-665.
    5. Moneta, Alessio & Pallante, Gianluca, 2022. "Identification of Structural VAR Models via Independent Component Analysis: A Performance Evaluation Study," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    6. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    7. Cheng, Xu, 2015. "Robust inference in nonlinear models with mixed identification strength," Journal of Econometrics, Elsevier, vol. 189(1), pages 207-228.
    8. Adam Lee & Geert Mesters, 2021. "Robust non-Gaussian inference for linear simultaneous equations models," Economics Working Papers 1792, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Gregory Cox, 2020. "Weak Identification with Bounds in a Class of Minimum Distance Models," Papers 2012.11222, arXiv.org, revised Dec 2022.
    10. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    11. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    12. Giacomo Bormetti & Fulvio Corsi, 2021. "A Lucas Critique Compliant SVAR model with Observation-driven Time-varying Parameters," Papers 2107.05263, arXiv.org, revised Feb 2022.
    13. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    14. Cordoni, Francesco & Dorémus, Nicolas & Moneta, Alessio, 2024. "Identification of vector autoregressive models with nonlinear contemporaneous structure," Journal of Economic Dynamics and Control, Elsevier, vol. 162(C).
    15. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    16. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    17. Karamysheva, Madina & Skrobotov, Anton, 2022. "Do we reject restrictions identifying fiscal shocks? identification based on non-Gaussian innovations," Journal of Economic Dynamics and Control, Elsevier, vol. 138(C).
    18. Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2022. "Moment tests of independent components," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 429-474, May.
    19. Andrews, Donald W.K. & Cheng, Xu, 2014. "Gmm Estimation And Uniform Subvector Inference With Possible Identification Failure," Econometric Theory, Cambridge University Press, vol. 30(2), pages 287-333, April.
    20. Stephen L. Ross & Zhentao Shi, 2022. "Measuring Social Interaction Effects When Instruments Are Weak," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 995-1006, June.

    More about this item

    Keywords

    Weak identification; Semiparametric modeling; Independent component analysis; Simultaneous equations;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:240:y:2024:i:1:s0304407623003639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.