IDEAS home Printed from https://ideas.repec.org/a/oup/emjrnl/v24y2021i1p162-176..html
   My bibliography  Save this article

Potential outcomes and finite-population inference for M-estimators

Author

Listed:
  • Ruonan Xu

Abstract

SummaryWhen a sample is drawn from or coincides with a finite population, the uncertainty of the coefficient estimators is often reported assuming the population is effectively infinite. The recent literature on finite-population inference instead derives an alternative asymptotic variance of the ordinary least squares estimator. Here, I extend the results to the more general setting of M-estimators and also find that the usual robust ‘sandwich’ estimator is conservative. The proposed asymptotic variance of M-estimators accounts for two sources of variation. In addition to the usual sampling-based uncertainty arising from (possibly) not observing the entire population, there is also design-based uncertainty, which is usually ignored in the common inference method, resulting from lack of knowledge of the counterfactuals. Under this alternative framework, we can obtain smaller standard errors of M-estimators when the population is treated as finite.

Suggested Citation

  • Ruonan Xu, 2021. "Potential outcomes and finite-population inference for M-estimators," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 162-176.
  • Handle: RePEc:oup:emjrnl:v:24:y:2021:i:1:p:162-176.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ectj/utaa022
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wooldridge, Jeffrey M., 2023. "What is a standard error? (And how should we compute it?)," Journal of Econometrics, Elsevier, vol. 237(2).
    2. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    3. Griffith, Alan & Noonen, Thomas, 2022. "The effects of public campaign funding: Evidence from Seattle’s Democracy Voucher program," Journal of Public Economics, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:24:y:2021:i:1:p:162-176.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.