IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v226y2022i1p4-20.html
   My bibliography  Save this article

Feedback in panel data models

Author

Listed:
  • Chamberlain, Gary

Abstract

Much of the analysis of panel data has been based on an assumption of strict exogeneity. Distributions are specified for outcome variables conditional on a latent individual effect and conditional on observed predictor variables at all dates, with the future values of the predictor variables assumed to have no effect on the conditional distribution. The paper relaxes this assumption in order to allow for lagged dependent variables and, more generally, for feedback from lagged dependent variables to current values of the predictor variables. Such feedback would arise in an evaluation study if the treatment variable is randomly assigned only conditional on the individual effect and on previous outcomes.

Suggested Citation

  • Chamberlain, Gary, 2022. "Feedback in panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 4-20.
  • Handle: RePEc:eee:econom:v:226:y:2022:i:1:p:4-20
    DOI: 10.1016/j.jeconom.2019.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407621001937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2019.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    2. Alok Bhargava & J. D. Sargan, 2006. "Estimating Dynamic Random Effects Models From Panel Data Covering Short Time Periods," World Scientific Book Chapters, in: Econometrics, Statistics And Computational Approaches In Food And Health Sciences, chapter 1, pages 3-27, World Scientific Publishing Co. Pte. Ltd..
    3. Wooldridge, Jeffrey M., 1999. "Distribution-free estimation of some nonlinear panel data models," Journal of Econometrics, Elsevier, vol. 90(1), pages 77-97, May.
    4. Zeldes, Stephen P, 1989. "Consumption and Liquidity Constraints: An Empirical Investigation," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 305-346, April.
    5. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    6. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    7. Hayashi, Fumio & Sims, Christopher A, 1983. "Nearly Efficient Estimation of Time Series Models with Predetermined, but Not Exogenous, Instruments," Econometrica, Econometric Society, vol. 51(3), pages 783-798, May.
    8. Ashenfelter, Orley C, 1978. "Estimating the Effect of Training Programs on Earnings," The Review of Economics and Statistics, MIT Press, vol. 60(1), pages 47-57, February.
    9. Robinson, P M, 1987. "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form," Econometrica, Econometric Society, vol. 55(4), pages 875-891, July.
    10. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-362, March.
    11. Newey, Whitney K, 1990. "Efficient Instrumental Variables Estimation of Nonlinear Models," Econometrica, Econometric Society, vol. 58(4), pages 809-837, July.
    12. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    13. Ashenfelter, Orley & Card, David, 1985. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 648-660, November.
    14. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    15. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    16. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    17. Wooldridge, Jeffrey M., 1997. "Multiplicative Panel Data Models Without the Strict Exogeneity Assumption," Econometric Theory, Cambridge University Press, vol. 13(5), pages 667-678, October.
    18. Keane, Michael P & Runkle, David E, 1992. "On the Estimation of Panel-Data Models with Serial Correlation When Instruments Are Not Strictly Exogenous: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 26-29, January.
    19. Hahn, Jinyong, 1997. "Efficient estimation of panel data models with sequential moment restrictions," Journal of Econometrics, Elsevier, vol. 79(1), pages 1-21, July.
    20. Keane, Michael P & Runkle, David E, 1992. "On the Estimation of Panel-Data Models with Serial Correlation When Instruments Are Not Strictly Exogenous," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 1-9, January.
    21. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    22. Robinson, P M, 1991. "Best Nonlinear Three-Stage Least Squares Estimation of Certain Econometric Models," Econometrica, Econometric Society, vol. 59(3), pages 755-786, May.
    23. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-596, May.
    24. Chamberlain, Gary, 1992. "Sequential Moment Restrictions in Panel Data: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 20-26, January.
    25. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geert Dhaene & Koen Jochmans, 2011. "Profile-score Adjustements for Nonlinearfixed-effect Models," Working Papers hal-01073733, HAL.
    2. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09j0031f620 is not listed on IDEAS
    3. Manuel Arellano & Stéphane Bonhomme, 2012. "Identifying Distributional Characteristics in Random Coefficients Panel Data Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 987-1020.
    4. Ai, Chunrong & Gan, Li, 2010. "An alternative root-n consistent estimator for panel data binary choice models," Journal of Econometrics, Elsevier, vol. 157(1), pages 93-100, July.
    5. Francesco Bartolucci & Valentina Nigro & Claudia Pigini, 2018. "Testing for state dependence in binary panel data with individual covariates by a modified quadratic exponential model," Econometric Reviews, Taylor & Francis Journals, vol. 37(1), pages 61-88, January.
    6. Geert Dhaene & Koen Jochmans, 2011. "Profile-score Adjustements for Nonlinearfixed-effect Models," Working Papers hal-01073733, HAL.
    7. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    8. Bartolucci, Francesco & Nigro, Valentina & Pigini, Claudia, 2013. "Testing for state dependence in binary panel data with individual covariates," MPRA Paper 48233, University Library of Munich, Germany.
    9. Anish Agarwal & Vasilis Syrgkanis, 2022. "Synthetic Blip Effects: Generalizing Synthetic Controls for the Dynamic Treatment Regime," Papers 2210.11003, arXiv.org.
    10. Kenneth Y. Chay & Michael Greenstone, 2005. "Does Air Quality Matter? Evidence from the Housing Market," Journal of Political Economy, University of Chicago Press, vol. 113(2), pages 376-424, April.
    11. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j0031f620 is not listed on IDEAS
    12. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.
    13. Moaniba, Igam M. & Su, Hsin-Ning & Lee, Pei-Chun, 2019. "On the drivers of innovation: Does the co-evolution of technological diversification and international collaboration matter?," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    14. Peter H. Egger & Christoph Jessberger & Mario Larch, 2013. "Impacts of Trade and the Environment on Clustered Multilateral Environmental Agreements," The World Economy, Wiley Blackwell, vol. 36(3), pages 331-348, March.
    15. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas emissions," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 49-62.
    16. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09j0031f620 is not listed on IDEAS
    17. St'ephane Bonhomme & Kevin Dano & Bryan S. Graham, 2023. "Identification in a Binary Choice Panel Data Model with a Predetermined Covariate," Papers 2301.05733, arXiv.org, revised Jul 2023.
    18. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0031f620 is not listed on IDEAS
    19. Stéphane Bonhomme & Kevin Dano & Bryan S. Graham, 2023. "Identification in a binary choice panel data model with a predetermined covariate," CeMMAP working papers 17/23, Institute for Fiscal Studies.
    20. Langevin, R.;, 2024. "Consistent Estimation of Finite Mixtures: An Application to Latent Group Panel Structures," Health, Econometrics and Data Group (HEDG) Working Papers 24/16, HEDG, c/o Department of Economics, University of York.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hahn, Jinyong, 1997. "Efficient estimation of panel data models with sequential moment restrictions," Journal of Econometrics, Elsevier, vol. 79(1), pages 1-21, July.
    2. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    3. Okui, Ryo, 2009. "The optimal choice of moments in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 151(1), pages 1-16, July.
    4. Stanislav Anatolyev, 2007. "Optimal Instruments In Time Series: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 21(1), pages 143-173, February.
    5. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    6. Hayakawa, Kazuhiko, 2019. "Alternative over-identifying restriction test in the GMM estimation of panel data models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 71-95.
    7. Donald W.K. Andrews & Biao Lu, 1999. "Consistent Model and Moment Selection Criteria for GMM Estimation with Applications to Dynamic Panel Data Models," Cowles Foundation Discussion Papers 1233, Cowles Foundation for Research in Economics, Yale University.
    8. De Blander, Rembert, 2020. "Iterative estimation correcting for error auto-correlation in short panels, applied to lagged dependent variable models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 3-29.
    9. Yoshitsugu Kitazawa, 2003. "Dynamic Panel Data Model and Moment Generating Function," Discussion Papers 13, Kyushu Sangyo University, Faculty of Economics.
    10. Yoshitsugu Kitazawa, 2012. "An improved theoretical ground for the linear feedback model and a new indicator," Discussion Papers 58, Kyushu Sangyo University, Faculty of Economics.
    11. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    12. Wooldridge, Jeffrey M., 1996. "Estimating systems of equations with different instruments for different equations," Journal of Econometrics, Elsevier, vol. 74(2), pages 387-405, October.
    13. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54, January.
    14. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," Working Paper series 38_12, Rimini Centre for Economic Analysis.
    15. Peter Phillips & Hyungsik Moon, 2000. "Nonstationary panel data analysis: an overview of some recent developments," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 263-286.
    16. Hayakawa, K. & Pesaran, M.H., 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Models," Cambridge Working Papers in Economics 1224, Faculty of Economics, University of Cambridge.
    17. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    18. Arellano, Manuel, 2016. "Modelling optimal instrumental variables for dynamic panel data models," Research in Economics, Elsevier, vol. 70(2), pages 238-261.
    19. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
    20. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:226:y:2022:i:1:p:4-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.