IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v72y2010i3p307-325.html
   My bibliography  Save this article

Exponential Tilting with Weak Instruments: Estimation and Testing

Author

Listed:
  • Mehmet Caner

Abstract

This article analyses exponential tilting estimator with weak instruments in a nonlinear framework. Our paper differs from the previous literature in the context of consistency proof. Tests that are robust to the identification problem are also analysed. These are Anderson–Rubin and Kleibergen types of test statistics. We also conduct a simulation study wherein we compare empirical likelihood and continuous updating‐based tests with exponential tilting (ET)‐based ones. The designs involve GARCH(1,1) and contaminated structural errors. We find that ET‐based Kleibergen test has the best size among these competitors.

Suggested Citation

  • Mehmet Caner, 2010. "Exponential Tilting with Weak Instruments: Estimation and Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(3), pages 307-325, June.
  • Handle: RePEc:bla:obuest:v:72:y:2010:i:3:p:307-325
    DOI: 10.1111/j.1468-0084.2009.00579.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1468-0084.2009.00579.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1468-0084.2009.00579.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Caner, Mehmet, 2007. "Boundedly pivotal structural change tests in continuous updating GMM with strong, weak identification and completely unidentified cases," Journal of Econometrics, Elsevier, vol. 137(1), pages 28-67, March.
    2. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    3. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(4), pages 667-709, August.
    4. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    5. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    6. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    7. Otsu, Taisuke, 2006. "Generalized Empirical Likelihood Inference For Nonlinear And Time Series Models Under Weak Identification," Econometric Theory, Cambridge University Press, vol. 22(3), pages 513-527, June.
    8. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    9. Kocherlakota, Narayana R., 1990. "On tests of representative consumer asset pricing models," Journal of Monetary Economics, Elsevier, vol. 26(2), pages 285-304, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alain Guay & Jean-Francois Lamarche, 2005. "The Information Content of Implied Probabilities to Detect Structural Change," Working Papers 0804, Brock University, Department of Economics, revised Oct 2008.
    2. Mehmet Caner, 2005. "Near Exogeneity and Weak Identification in Generalized Empirical Likelihood Estimators: Fixed and Many Moment Asymptotics," Econometrics 0509018, University Library of Munich, Germany.
    3. Richard Smith, 2005. "Weak instruments and empirical likelihood: a discussion of the papers by DWK Andrews and JH Stock and Y Kitamura," CeMMAP working papers CWP13/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," Cowles Foundation Discussion Papers 1530, Cowles Foundation for Research in Economics, Yale University.
    5. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(4), pages 667-709, August.
    6. Paul Levine & Luis F. Martins & Vasco J. Gabriel, 2006. "Robust Estimates of the New Keynesian Phillips Curve," School of Economics Discussion Papers 0206, School of Economics, University of Surrey.
    7. Tang, Niansheng & Yan, Xiaodong & Zhao, Puying, 2018. "Exponentially tilted likelihood inference on growing dimensional unconditional moment models," Journal of Econometrics, Elsevier, vol. 202(1), pages 57-74.
    8. Chaudhuri, Saraswata & Renault, Eric, 2020. "Score tests in GMM: Why use implied probabilities?," Journal of Econometrics, Elsevier, vol. 219(2), pages 260-280.
    9. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caner, Mehmet, 2008. "Nearly-singular design in GMM and generalized empirical likelihood estimators," Journal of Econometrics, Elsevier, vol. 144(2), pages 511-523, June.
    2. Guggenberger, Patrik & Smith, Richard J., 2008. "Generalized empirical likelihood tests in time series models with potential identification failure," Journal of Econometrics, Elsevier, vol. 142(1), pages 134-161, January.
    3. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    4. Mehmet Caner, 2005. "Exponential Tilting With Weak Instruments," Working Paper 208, Department of Economics, University of Pittsburgh, revised Jan 2005.
    5. Martins, Luis F. & Gabriel, Vasco J., 2009. "New Keynesian Phillips Curves and potential identification failures: A Generalized Empirical Likelihood analysis," Journal of Macroeconomics, Elsevier, vol. 31(4), pages 561-571, December.
    6. Richard Smith, 2005. "Weak instruments and empirical likelihood: a discussion of the papers by DWK Andrews and JH Stock and Y Kitamura," CeMMAP working papers CWP13/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Chaudhuri, Saraswata & Renault, Eric, 2020. "Score tests in GMM: Why use implied probabilities?," Journal of Econometrics, Elsevier, vol. 219(2), pages 260-280.
    8. Mehmet Caner, 2006. "Near Exogeneity and Weak Identification in Generlized Empirical Likelihood estimators : Fixed and Many Moment Asymptotics," Working Paper 212, Department of Economics, University of Pittsburgh, revised Jan 2006.
    9. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Mehmet Caner, 2005. "Nearly Singular design in gmm and generalized empirical likelihood estimators," Working Paper 211, Department of Economics, University of Pittsburgh, revised Jan 2005.
    11. Joel L. Horowitz, 2018. "Non-Asymptotic Inference in Instrumental Variables Estimation," Papers 1809.03600, arXiv.org.
    12. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," Working Paper series 38_12, Rimini Centre for Economic Analysis.
    13. Alain Guay & Florian Pelgrin, 2007. "Using Implied Probabilities to Improve Estimation with Unconditional Moment Restrictions," Cahiers de recherche 0747, CIRPEE.
    14. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(4), pages 667-709, August.
    15. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    16. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    17. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    18. Paul Levine & Luis F. Martins & Vasco J. Gabriel, 2006. "Robust Estimates of the New Keynesian Phillips Curve," School of Economics Discussion Papers 0206, School of Economics, University of Surrey.
    19. Horowitz, Joel L., 2021. "Bounding the difference between true and nominal rejection probabilities in tests of hypotheses about instrumental variables models," Journal of Econometrics, Elsevier, vol. 222(2), pages 1057-1082.
    20. Joel L. Horowitz, 2017. "Non-asymptotic inference in instrumental variables estimation," CeMMAP working papers CWP46/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    21. Ramalho Joaquim J.S., 2005. "Small Sample Bias of Alternative Estimation Methods for Moment Condition Models: Monte Carlo Evidence for Covariance Structures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(1), pages 1-20, March.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:72:y:2010:i:3:p:307-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.