IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v201y2017i2p176-197.html
   My bibliography  Save this article

Double instrumental variable estimation of interaction models with big data

Author

Listed:
  • Gagliardini, Patrick
  • Gouriéroux, Christian

Abstract

The factor analysis of a (n,m) matrix of observations Y is based on the joint spectral decomposition of the matrix squares YY′ and Y′Y for Principal Component Analysis (PCA). For very large matrix dimensions n and m, this approach has a high level of numerical complexity. The big data feature suggests new estimation methods with a smaller degree of numerical complexity. The double Instrumental Variable (IV) approach uses row and column instruments to estimate consistently the factors via an averaging method. We compare the double IV approach to PCA in terms of numerical complexity and statistical efficiency. The double IV approach can be used for the analysis of recommender systems and provides a new collaborative filtering approach.

Suggested Citation

  • Gagliardini, Patrick & Gouriéroux, Christian, 2017. "Double instrumental variable estimation of interaction models with big data," Journal of Econometrics, Elsevier, vol. 201(2), pages 176-197.
  • Handle: RePEc:eee:econom:v:201:y:2017:i:2:p:176-197
    DOI: 10.1016/j.jeconom.2017.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407617301495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2017.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Jushan & Ng, Serena, 2010. "Instrumental Variable Estimation In A Data Rich Environment," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1577-1606, December.
    2. Forni, Mario & Reichlin, Lucrezia, 1996. "Dynamic Common Factors in Large Cross-Sections," Empirical Economics, Springer, vol. 21(1), pages 27-42.
    3. P. L. Davies, 2012. "Interactions in the Analysis of Variance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1502-1509, December.
    4. C. Gouriéroux & J.‐C. Héam & A. Monfort, 2012. "Bilateral exposures and systemic solvency risk," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 45(4), pages 1273-1309, November.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521471626, September.
    7. Upper, Christian & Worms, Andreas, 2004. "Estimating bilateral exposures in the German interbank market: Is there a danger of contagion?," European Economic Review, Elsevier, vol. 48(4), pages 827-849, August.
    8. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    9. James Algina, 1980. "A note on identification in the oblique and orthogonal factor analysis models," Psychometrika, Springer;The Psychometric Society, vol. 45(3), pages 393-396, September.
    10. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    11. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    12. Gagliardini, Patrick & Gourieroux, Christian, 2014. "Efficiency In Large Dynamic Panel Models With Common Factors," Econometric Theory, Cambridge University Press, vol. 30(5), pages 961-1020, October.
    13. Vincent BOUCHER & Ismael MOURIFIÉ, 2013. "My Friend Far Far Away: Asymptotic Properties of Pairwise Stable Networks," Working Papers tecipa-499, University of Toronto, Department of Economics.
    14. Gagliardini,Patrick & Gouriéroux,Christian, 2014. "Granularity Theory with Applications to Finance and Insurance," Cambridge Books, Cambridge University Press, number 9781107662889, September.
    15. Paul Bekker, 1986. "A note on the identification of restricted factor loading matrices," Psychometrika, Springer;The Psychometric Society, vol. 51(4), pages 607-611, December.
    16. Granger, C. W. J., 1987. "Implications of Aggregation with Common Factors," Econometric Theory, Cambridge University Press, vol. 3(2), pages 208-222, April.
    17. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    18. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models 2 volume set," Cambridge Books, Cambridge University Press, number 9780521478373, July.
    19. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    20. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 117-139, August.
    21. Gagliardini,Patrick & Gouriéroux,Christian, 2014. "Granularity Theory with Applications to Finance and Insurance," Cambridge Books, Cambridge University Press, number 9781107070837, September.
    22. Kodde, D A & Palm, Franz C & Pfann, G A, 1990. "Asymptotic Least-Squares Estimation Efficiency Considerations and Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(3), pages 229-243, July-Sept.
    23. repec:dau:papers:123456789/14967 is not listed on IDEAS
    24. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    25. Chenlei Leng & Cheng Yong Tang, 2012. "Sparse Matrix Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1187-1200, September.
    26. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    2. Jad Beyhum & Eric Gautier, 2020. "Factor and factor loading augmented estimators for panel regression," Working Papers hal-02957008, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cte:wsrepe:23974 is not listed on IDEAS
    2. Bai, Jushan & Ng, Serena, 2019. "Rank regularized estimation of approximate factor models," Journal of Econometrics, Elsevier, vol. 212(1), pages 78-96.
    3. Yunus Emre Ergemen & Carlos Vladimir Rodríguez-Caballero, 2016. "A Dynamic Multi-Level Factor Model with Long-Range Dependence," CREATES Research Papers 2016-23, Department of Economics and Business Economics, Aarhus University.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    7. Gregory Connor & Robert A Korajczyk, 2024. "Semi-Strong Factors in Asset Returns," Journal of Financial Econometrics, Oxford University Press, vol. 22(1), pages 70-93.
    8. Jushan Bai & Serena Ng, 2017. "Principal Components and Regularized Estimation of Factor Models," Papers 1708.08137, arXiv.org, revised Nov 2017.
    9. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    10. Alvarez, Rocio & Camacho, Maximo & Perez-Quiros, Gabriel, 2016. "Aggregate versus disaggregate information in dynamic factor models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 680-694.
    11. repec:dau:papers:123456789/11663 is not listed on IDEAS
    12. Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Jun 2024.
    13. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    14. Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
    15. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    16. repec:zbw:bofitp:2011_001 is not listed on IDEAS
    17. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    18. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    19. Ergemen, Yunus Emre, 2023. "Parametric estimation of long memory in factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1483-1499.
    20. Francisco Corona & Pilar Poncela & Esther Ruiz, 2020. "Estimating Non-stationary Common Factors: Implications for Risk Sharing," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
    21. repec:dau:papers:123456789/11692 is not listed on IDEAS
    22. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    23. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    24. Kapetanios, George & Marcellino, Massimiliano, 2010. "Factor-GMM estimation with large sets of possibly weak instruments," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2655-2675, November.

    More about this item

    Keywords

    Interaction model; Factor analysis; Big data; Instrumental variable; Recommender system;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:201:y:2017:i:2:p:176-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.