IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v98y2011i1p17-34.html
   My bibliography  Save this article

The multivariate beta process and an extension of the Polya tree model

Author

Listed:
  • Lorenzo Trippa
  • Peter Müller
  • Wesley Johnson

Abstract

We introduce a novel stochastic process that we term the multivariate beta process. The process is defined for modelling-dependent random probabilities and has beta marginal distributions. We use this process to define a probability model for a family of unknown distributions indexed by covariates. The marginal model for each distribution is a Polya tree prior. An important feature of the proposed prior is the easy centring of the nonparametric model around any parametric regression model. We use the model to implement nonparametric inference for survival distributions. The nonparametric model that we introduce can be adopted to extend the support of prior distributions for parametric regression models. Copyright 2011, Oxford University Press.

Suggested Citation

  • Lorenzo Trippa & Peter Müller & Wesley Johnson, 2011. "The multivariate beta process and an extension of the Polya tree model," Biometrika, Biometrika Trust, vol. 98(1), pages 17-34.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:1:p:17-34
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asq072
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nieto-Barajas, Luis E., 2014. "Bayesian semiparametric analysis of short- and long-term hazard ratios with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 477-490.
    2. Andrés F. Barrientos & Alejandro Jara & Fernando A. Quintana, 2017. "Fully Nonparametric Regression for Bounded Data Using Dependent Bernstein Polynomials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 806-825, April.
    3. Antonio Lijoi & Bernardo Nipoti, 2014. "A Class of Hazard Rate Mixtures for Combining Survival Data From Different Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 802-814, June.
    4. Igor Prünster & Matteo Ruggiero, 2011. "A Bayesian nonparametric approach to modeling market share dynamics," Carlo Alberto Notebooks 217, Collegio Carlo Alberto.
    5. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014. "Beta-product dependent Pitman–Yor processes for Bayesian inference," Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.
    6. Antonio Lijoi & Bernardo Nipoti, 2013. "A class of hazard rate mixtures for combining survival data from different experiments," DEM Working Papers Series 059, University of Pavia, Department of Economics and Management.
    7. Peluso, Stefano & Mira, Antonietta & Muliere, Pietro, 2015. "Reinforced urn processes for credit risk models," Journal of Econometrics, Elsevier, vol. 184(1), pages 1-12.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:1:p:17-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.