IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2017-016.html
   My bibliography  Save this paper

Conditional moment restrictions and the role of density information in estimated structural models

Author

Listed:
  • Tryphonides, Andreas

Abstract

While incomplete models are desirable due to their robustness to misspecification, they cannot be used to conduct full information exercises i.e. counterfactual experiments and predictions. Moreover, the performance of the corresponding GMM estimators is fragile in small samples. To deal with both issues, we propose the use of an auxiliary conditional model for the observables f(X|Z, '), where the equilibrium conditions E(m(X, #)|Z) = 0 are imposed on f(X|Z, ') using information projections, and (#, ') are estimated jointly. We provide the asymptotic theory for parameter estimates for a general set of conditional projection densities, under correct and local misspecification of f(X|Z, '). In either cases, efficiency gains are significant. We provide simulation evidence for the Mean Squared Error (MSE) both under the case of local and fixed density misspecification and apply the method to the prototypical stochastic growth model. Moreover, we illustrate that given (#ˆ, 'ˆ) it is now feasible to do counterfactual experiments without explicitly solving for the equilibrium law of motion.

Suggested Citation

  • Tryphonides, Andreas, 2017. "Conditional moment restrictions and the role of density information in estimated structural models," SFB 649 Discussion Papers 2017-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2017-016
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/169206/1/SFB649DP2017-016.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    4. Wouter J. den Haan & Joris de Wind, 2010. "How well-behaved are higher-order perturbation solutions?," DNB Working Papers 240, Netherlands Central Bank, Research Department.
    5. Che‐Lin Su & Kenneth L. Judd, 2012. "Constrained Optimization Approaches to Estimation of Structural Models," Econometrica, Econometric Society, vol. 80(5), pages 2213-2230, September.
    6. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 497-529.
    7. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    8. Hansen, Bruce E., 2016. "Efficient shrinkage in parametric models," Journal of Econometrics, Elsevier, vol. 190(1), pages 115-132.
    9. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    10. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    11. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    12. Ireland, Peter N., 2004. "A method for taking models to the data," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1205-1226, March.
    13. Hausman, Jerry & Lewis, Randall & Menzel, Konrad & Newey, Whitney, 2011. "Properties of the CUE estimator and a modification with moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 45-57.
    14. Campbell Leith & Eric Leeper, 2016. "Understanding Inflation as a Joint Monetary-Fiscal Phenomenon," Working Papers 2016_01, Business School - Economics, University of Glasgow.
    15. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    16. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    17. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    18. Blanchard, Olivier J, 1979. "Backward and Forward Solutions for Economies with Rational Expectations," American Economic Review, American Economic Association, vol. 69(2), pages 114-118, May.
    19. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    20. Komunjer, Ivana & Ragusa, Giuseppe, 2016. "Existence And Characterization Of Conditional Density Projections," Econometric Theory, Cambridge University Press, vol. 32(4), pages 947-987, August.
    21. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2017-016 is not listed on IDEAS
    2. Andreas Tryphonides, 2018. "Tilting Approximate Models," Papers 1805.10869, arXiv.org, revised Mar 2024.
    3. Ai, Chunrong & Chen, Xiaohong, 2012. "The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions," Journal of Econometrics, Elsevier, vol. 170(2), pages 442-457.
    4. Cui, Li-E & Zhao, Puying & Tang, Niansheng, 2022. "Generalized empirical likelihood for nonsmooth estimating equations with missing data," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    5. Parente, Paulo M.D.C. & Smith, Richard J., 2017. "Tests of additional conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 200(1), pages 1-16.
    6. Smith, Richard J., 2007. "Efficient information theoretic inference for conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 138(2), pages 430-460, June.
    7. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    8. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," CIRJE F-Series CIRJE-F-430, CIRJE, Faculty of Economics, University of Tokyo.
    9. Stefan Boes, 2010. "Count Data Models with Correlated Unobserved Heterogeneity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 382-402, September.
    10. Richard Smith, 2005. "Local GEL methods for conditional moment restrictions," CeMMAP working papers CWP15/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    12. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    13. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    14. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    15. Antoine, Bertille & Bonnal, Helene & Renault, Eric, 2007. "On the efficient use of the informational content of estimating equations: Implied probabilities and Euclidean empirical likelihood," Journal of Econometrics, Elsevier, vol. 138(2), pages 461-487, June.
    16. Stefan Boes, 2007. "Count Data Models with Unobserved Heterogeneity: An Empirical Likelihood Approach," SOI - Working Papers 0704, Socioeconomic Institute - University of Zurich.
    17. Alain Guay & Florian Pelgrin, 2007. "Using Implied Probabilities to Improve Estimation with Unconditional Moment Restrictions," Cahiers de recherche 0747, CIRPEE.
    18. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    19. Otsu, Taisuke, 2011. "Moderate deviations of generalized method of moments and empirical likelihood estimators," Journal of Multivariate Analysis, Elsevier, vol. 102(8), pages 1203-1216, September.
    20. Fan, Yanqin & Gentry, Matthew & Li, Tong, 2011. "A new class of asymptotically efficient estimators for moment condition models," Journal of Econometrics, Elsevier, vol. 162(2), pages 268-277, June.
    21. Philip Kostov, 2013. "Empirical likelihood estimation of the spatial quantile regression," Journal of Geographical Systems, Springer, vol. 15(1), pages 51-69, January.

    More about this item

    Keywords

    Incomplete models; Information projections; Small Samples; Shrinkage;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2017-016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.