IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v498y2024ics0304380024002916.html
   My bibliography  Save this article

Exploring the optimal fuzzy rule-based modeling procedure to assess habitat suitability of indicator Collembola species in forest soils

Author

Listed:
  • Kim, Yongeun
  • Lee, Yun-Sik
  • Lee, Minyoung
  • Wee, June
  • Hong, Jinsol
  • Cho, Kijong

Abstract

In the face of escalating anthropogenic fragmentation and habitat destruction, research on soil habitat disturbance using indicator species is increasingly critical to conserve and maintain the ecological functions of forest ecosystems. The modeling methodology for habitat suitability is a valuable tool for assessing habitat conditions based on the ecological preferences of indicator species; however, its application to such species in forest soils remains unexplored. Therefore, this study aimed to fill this gap by identifying an optimal procedure for developing a fuzzy model to evaluate the habitat suitability of indicator species based on their abundance classes. Fuzzy models were developed for assessing the habitat suitability of Folsomia quadrioculata and F. octoculata based on data collected from seven mountains using three types of selected variable numbers (3-, 4-, and 5-variable) for two input variable selection methods (statistics-based variable selection, SVS; knowledge-based variable selection, KVS), and their performance was compared. Our results indicate that the SVS-fuzzy model performed better than the KVS-fuzzy model in both the model training and testing phases. As the number of input variables increased, the performance of the KVS-fuzzy model improved; however, it still exhibited lower performance compared to the SVS-fuzzy model. Meanwhile, the optimal SVS-fuzzy model effectively explained the abundance classes of the two collembolan species based on the environmental conditions of their habitats (F1 score > 0.743, Matthews correlation coefficient > 0.520). The findings of this study provide a solid foundation for developing effective models to understand the habitat suitability of soil indicator species. Expanding the application of fuzzy modeling to diverse species in forest soils will improve our understanding of habitat disturbance and degradation, contributing to the development of conservation strategies for forest ecosystems.

Suggested Citation

  • Kim, Yongeun & Lee, Yun-Sik & Lee, Minyoung & Wee, June & Hong, Jinsol & Cho, Kijong, 2024. "Exploring the optimal fuzzy rule-based modeling procedure to assess habitat suitability of indicator Collembola species in forest soils," Ecological Modelling, Elsevier, vol. 498(C).
  • Handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002916
    DOI: 10.1016/j.ecolmodel.2024.110903
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.