IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v498y2024ics0304380024002618.html
   My bibliography  Save this article

A trait-based modelling approach towards dynamic predictions of understorey communities in temperate forests

Author

Listed:
  • Landuyt, Dries
  • Blondeel, Haben
  • Lorer, Eline
  • Perring, Michael P.
  • Steppe, Kathy
  • Verheyen, Kris

Abstract

Understorey communities in temperate forests have often been ignored in the study of the dynamics of forest structure and function, while evidence for the importance of this biotic layer is accumulating. Scarcity in understorey data with a high temporal resolution, and understorey data types that do not match popular vegetation modelling concepts, have limited previous modelling attempts to empirical models that are hard to extrapolate to new environmental conditions. Here we introduce a new process-based modelling approach designed specifically for understorey communities, whose dynamics are generally characterised by changes in (species-specific) cover data, while species characterisation is largely based on plant functional trait measurements. By confronting the model to data gathered in a large understorey mesocosm experiment, we show that our model concept is promising, and is able to predict performance differences within a species. Predictions across species were found to be more challenging, and will likely require new data on understorey traits and processes. In particular, new data on understorey carbon assimilation rates, vegetative phenology, plant architecture and belowground processes, are needed to advance the field of process-based understorey modelling.

Suggested Citation

  • Landuyt, Dries & Blondeel, Haben & Lorer, Eline & Perring, Michael P. & Steppe, Kathy & Verheyen, Kris, 2024. "A trait-based modelling approach towards dynamic predictions of understorey communities in temperate forests," Ecological Modelling, Elsevier, vol. 498(C).
  • Handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002618
    DOI: 10.1016/j.ecolmodel.2024.110873
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seidl, Rupert & Rammer, Werner & Scheller, Robert M. & Spies, Thomas A., 2012. "An individual-based process model to simulate landscape-scale forest ecosystem dynamics," Ecological Modelling, Elsevier, vol. 231(C), pages 87-100.
    2. Pieter Sanczuk & Karen Pauw & Emiel Lombaerde & Miska Luoto & Camille Meeussen & Sanne Govaert & Thomas Vanneste & Leen Depauw & Jörg Brunet & Sara A. O. Cousins & Cristina Gasperini & Per-Ola Hedwall, 2023. "Microclimate and forest density drive plant population dynamics under climate change," Nature Climate Change, Nature, vol. 13(8), pages 840-847, August.
    3. Fischer, Rico & Bohn, Friedrich & Dantas de Paula, Mateus & Dislich, Claudia & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Kazmierczak, Martin & Knapp, Nikolai & Lehmann, Sebastian & Paulick, Sebastia, 2016. "Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests," Ecological Modelling, Elsevier, vol. 326(C), pages 124-133.
    4. Taubert, Franziska & Frank, Karin & Huth, Andreas, 2012. "A review of grassland models in the biofuel context," Ecological Modelling, Elsevier, vol. 245(C), pages 84-93.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    2. Wirth, Stephen Björn & Taubert, Franziska & Tietjen, Britta & Müller, Christoph & Rolinski, Susanne, 2021. "Do details matter? Disentangling the processes related to plant species interactions in two grassland models of different complexity," Ecological Modelling, Elsevier, vol. 460(C).
    3. Verbeeck, Hans & De Deurwaerder, Hannes P.T. & Kearsley, Elizabeth & Moorthy, Sruthi M.Krishna & Mundondo, Francis Mumbanza & Coppieters, Kasper & Schnitzer, Stefan A. & Longo, Marcos & Peaucelle, Mar, 2024. "Towards a liana plant functional type for vegetation models," Ecological Modelling, Elsevier, vol. 498(C).
    4. Luo, Xu & He, Hong S. & Liang, Yu & Wu, Zhiwei, 2015. "Evaluating simulated effects of succession, fire, and harvest for LANDIS PRO forest landscape model," Ecological Modelling, Elsevier, vol. 297(C), pages 1-10.
    5. Vacchiano, Giorgio & Ascoli, Davide & Berzaghi, Fabio & Lucas-Borja, Manuel Esteban & Caignard, Thomas & Collalti, Alessio & Mairota, Paola & Palaghianu, Ciprian & Reyer, Christopher P.O. & Sanders, T, 2018. "Reproducing reproduction: How to simulate mast seeding in forest models," Ecological Modelling, Elsevier, vol. 376(C), pages 40-53.
    6. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    7. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    8. Ribeiro, N.S. & Armstrong, Amanda Hildt & Fischer, Rico & Kim, Yeon-Su & Shugart, Herman Henry & Ribeiro-Barros, Ana I. & Chauque, Aniceto & Tear, T. & Washington-Allen, Robert & Bandeira, Romana R., 2021. "Prediction of forest parameters and carbon accounting under different fire regimes in Miombo woodlands, Niassa Special Reserve, Northern Mozambique," Forest Policy and Economics, Elsevier, vol. 133(C).
    9. Rau, E-Ping & Fischer, Fabian & Joetzjer, Émilie & Maréchaux, Isabelle & Sun, I Fang & Chave, Jérôme, 2022. "Transferability of an individual- and trait-based forest dynamics model: A test case across the tropics," Ecological Modelling, Elsevier, vol. 463(C).
    10. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    11. Fitts, Lucia A. & Fraser, Jacob S. & Miranda, Brian R. & Domke, Grant M. & Russell, Matthew B. & Sturtevant, Brian R., 2023. "An iterative site-scale approach to calibrate and corroborate successional processes within a forest landscape model," Ecological Modelling, Elsevier, vol. 477(C).
    12. Forrester, David I., 2014. "A stand-level light interception model for horizontally and vertically heterogeneous canopies," Ecological Modelling, Elsevier, vol. 276(C), pages 14-22.
    13. Moulin, Thibault & Perasso, Antoine & Gillet, François, 2018. "Modelling vegetation dynamics in managed grasslands: Responses to drivers depend on species richness," Ecological Modelling, Elsevier, vol. 374(C), pages 22-36.
    14. Peringer, Alexander & Buttler, Alexandre & Gillet, François & Pătru-Stupariu, Ileana & Schulze, Kiowa A. & Stupariu, Mihai-Sorin & Rosenthal, Gert, 2017. "Disturbance-grazer-vegetation interactions maintain habitat diversity in mountain pasture-woodlands," Ecological Modelling, Elsevier, vol. 359(C), pages 301-310.
    15. Schmid, Julia S. & Huth, Andreas & Taubert, Franziska, 2021. "Influences of traits and processes on productivity and functional composition in grasslands: A modeling study," Ecological Modelling, Elsevier, vol. 440(C).
    16. Collalti, Alessio & Perugini, Lucia & Santini, Monia & Chiti, Tommaso & Nolè, Angelo & Matteucci, Giorgio & Valentini, Riccardo, 2014. "A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy," Ecological Modelling, Elsevier, vol. 272(C), pages 362-378.
    17. Larocque, Guy R. & Bhatti, Jagtar & Arsenault, André, 2014. "Integrated modelling software platform development for effective use of ecosystem models," Ecological Modelling, Elsevier, vol. 288(C), pages 195-202.
    18. Valeh Khaledi & Bahareh Kamali & Gunnar Lischeid & Ottfried Dietrich & Mariel F. Davies & Claas Nendel, 2024. "Challenges of Including Wet Grasslands with Variable Groundwater Tables in Large-Area Crop Production Simulations," Agriculture, MDPI, vol. 14(5), pages 1-17, April.
    19. Kruse, Stefan & Wieczorek, Mareike & Jeltsch, Florian & Herzschuh, Ulrike, 2016. "Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix," Ecological Modelling, Elsevier, vol. 338(C), pages 101-121.
    20. Henniger, Hans & Huth, Andreas & Frank, Karin & Bohn, Friedrich J., 2023. "Creating virtual forests around the globe and analysing their state space," Ecological Modelling, Elsevier, vol. 483(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.