IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v493y2024ics0304380024000899.html
   My bibliography  Save this article

Analysis of the sustainability index for ecologically low-input integrated farming: A comprehensive assessment of environmental, economic, and social impact

Author

Listed:
  • Wang, Wei
  • AL-Huqail, Arwa
  • Ali, Elimam
  • Abbas, Mohamed
  • Assilzadeh, Hamid

Abstract

A comprehensive sustainability index was designed in this study to evaluate the effectiveness and environmental impact of ecologically low-input integrated farming systems. By integrating diverse agricultural practices while minimizing reliance on external, non-renewable resources, this approach aims to enhance ecological harmony and sustainability. The index provides a multi-dimensional assessment, encompassing environmental, economic, and social aspects, to gauge the overall sustainability of these integrated farming practices. The procedure involved defining critical sustainability criteria across environmental, economic, and social dimensions, collecting relevant data on farming practices, and constructing a model to assess and score these practices. The index was validated through real-world applications and engaged with various stakeholders for insights and practical verification. Environmental data involves measuring soil nutrients (5 %), water usage (500 gallons/acre), and biodiversity (30 species/acre) to assess the ecological impact of farming practices. Economic data focuses on recording crop yields, input costs, and market prices to evaluate the financial viability of these practices. Social data is collected through surveys on labor practices, job satisfaction, and community impact, providing insights into the social implications and acceptability of the farming methods. The data revealed that the farming system aligned well with sustainability benchmarks, exhibiting no deviation from optimal levels in soil nitrogen content and water usage. Strong profitability and input cost efficiency were observed in the economic dimension, with a net income per acre of $400/acre and an input cost efficiency of 50 %. In the social aspect, although reasonably scored, specific labor metrics and regional/industry standards were lacking for a comprehensive evaluation. Overall, the farming system demonstrated commendable sustainability practices, with an environmental score of 7.5/10, an economic score of 8/10, and a social score of 7/10, suggesting potential for further improvements, particularly in addressing social sustainability factors.

Suggested Citation

  • Wang, Wei & AL-Huqail, Arwa & Ali, Elimam & Abbas, Mohamed & Assilzadeh, Hamid, 2024. "Analysis of the sustainability index for ecologically low-input integrated farming: A comprehensive assessment of environmental, economic, and social impact," Ecological Modelling, Elsevier, vol. 493(C).
  • Handle: RePEc:eee:ecomod:v:493:y:2024:i:c:s0304380024000899
    DOI: 10.1016/j.ecolmodel.2024.110701
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024000899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anita Wreford & Ada Ignaciuk & Guillaume Gruère, 2017. "Overcoming barriers to the adoption of climate-friendly practices in agriculture," OECD Food, Agriculture and Fisheries Papers 101, OECD Publishing.
    2. James Rising & Naresh Devineni, 2020. "Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. Erik Mathijs & Erwin Wauters, 2020. "Making Farming Systems Truly Resilient," EuroChoices, The Agricultural Economics Society, vol. 19(2), pages 72-76, August.
    4. Maurer, Rainer, 2023. "Comparing the effect of different agricultural land-use systems on biodiversity," Land Use Policy, Elsevier, vol. 134(C).
    5. Giannetti, B.F. & Ogura, Y. & Bonilla, S.H. & Almeida, C.M.V.B., 2011. "Accounting emergy flows to determine the best production model of a coffee plantation," Energy Policy, Elsevier, vol. 39(11), pages 7399-7407.
    6. Rosa-Schleich, Julia & Loos, Jacqueline & Mußhoff, Oliver & Tscharntke, Teja, 2019. "Ecological-economic trade-offs of Diversified Farming Systems – A review," Ecological Economics, Elsevier, vol. 160(C), pages 251-263.
    7. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    8. Safa, Maryam & Sari, Puteri Azura & Shariati, Mahdi & Suhatril, Meldi & Trung, Nguyen Thoi & Wakil, Karzan & Khorami, Majid, 2020. "Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    9. Diswandi, Diswandi, 2017. "A hybrid Coasean and Pigouvian approach to Payment for Ecosystem Services Program in West Lombok: Does it contribute to poverty alleviation?," Ecosystem Services, Elsevier, vol. 23(C), pages 138-145.
    10. Zhang, Wei & Ricketts, Taylor H. & Kremen, Claire & Carney, Karen & Swinton, Scott M., 2007. "Ecosystem services and dis-services to agriculture," Ecological Economics, Elsevier, vol. 64(2), pages 253-260, December.
    11. Deng, Zhongqi & Song, Shunfeng & Jiang, Nan & Pang, Ruizhi, 2023. "Sustainable development in China? A nonparametric decomposition of economic growth," China Economic Review, Elsevier, vol. 81(C).
    12. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    13. Tittonell, Pablo, 2020. "Assessing resilience and adaptability in agroecological transitions," Agricultural Systems, Elsevier, vol. 184(C).
    14. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    15. Xin Zhang, 2017. "A plan for efficient use of nitrogen fertilizers," Nature, Nature, vol. 543(7645), pages 322-323, March.
    16. Hu, Weicheng & Yang, Qingshan & Yuan, Ziting & Yang, Fucheng, 2024. "Wind farm layout optimization in complex terrain based on CFD and IGA-PSO," Energy, Elsevier, vol. 288(C).
    17. Liu, Moucheng & Yang, Lun & Min, Qingwen & Bai, Yangying, 2018. "Eco-compensation standards for agricultural water conservation: A case study of the paddy land-to-dry land program in China," Agricultural Water Management, Elsevier, vol. 204(C), pages 192-197.
    18. Liu, Moucheng & Liu, Weiwei & Yang, Lun & Jiao, Wenjun & He, Siyuan & Min, Qingwen, 2019. "A dynamic eco-compensation standard for Hani Rice Terraces System in southwest China," Ecosystem Services, Elsevier, vol. 36(C), pages 1-1.
    19. Pasquale Borrelli & David A. Robinson & Larissa R. Fleischer & Emanuele Lugato & Cristiano Ballabio & Christine Alewell & Katrin Meusburger & Sirio Modugno & Brigitta Schütt & Vito Ferro & Vincenzo Ba, 2017. "An assessment of the global impact of 21st century land use change on soil erosion," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Huayang & Qiao, Yuhui & Zhao, Haijun & Ju, Xuehai & Zanoli, Raffaele & Waqas, Muhammad Ahmed & Lun, Fei & Knudsen, Marie Trydeman, 2022. "Developing a conceptual model to quantify eco-compensation based on environmental and economic cost-benefit analysis for promoting the ecologically intensified agriculture," Ecosystem Services, Elsevier, vol. 56(C).
    2. Dazhuan Ge & Hualou Long & Li Ma & Yingnan Zhang & Shuangshuang Tu, 2017. "Analysis Framework of China’s Grain Production System: A Spatial Resilience Perspective," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    3. Dardonville, Manon & Legrand, Baptiste & Clivot, Hugues & Bernardin, Claire & Bockstaller, Christian & Therond, Olivier, 2022. "Assessment of ecosystem services and natural capital dynamics in agroecosystems," Ecosystem Services, Elsevier, vol. 54(C).
    4. Yu, Wenjia & Yue, Yaojie & Wang, Fangxiong, 2022. "The spatial-temporal coupling pattern of grain yield and fertilization in the North China plain," Agricultural Systems, Elsevier, vol. 196(C).
    5. Zhen, Huayang & Gao, Wenzeng & Yuan, Kai & Ju, Xuehai & Qiao, Yuhui, 2021. "Internalizing externalities through net ecosystem service analysis–A case study of greenhouse vegetable farms in Beijing," Ecosystem Services, Elsevier, vol. 50(C).
    6. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    7. Bellassen Valentin & Drut Marion & Antonioli Federico & Brečić Ružica & Donati Michele & Ferrer-Pérez Hugo & Gauvrit Lisa & Hoang Viet & Knutsen Steinnes Kamilla & Lilavanichakul Apichaya & Majewski E, 2021. "The Carbon and Land Footprint of Certified Food Products," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 19(2), pages 113-126, December.
    8. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Xiao, Xuechen & Zang, Hecang & Liu, Yang & Zhang, Zhen & Liu, Ying & Ejaz, Irsa & Du, Chenghang & Wang, Zhimin & Sun, Zhencai & Zhang, Yinghua, 2023. "Promoting winter wheat sustainable intensification by higher nitrogen distribution in top second to fourth leaves under water-restricted condition in North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).
    10. Guo, Xiao-Xia & Li, Ke-Li & Liu, Yi-Ze & Zhuang, Ming-Hao & Wang, Chong, 2022. "Toward the economic-environmental sustainability of smallholder farming systems through judicious management strategies and optimized planting structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Rudi Hessel & Guido Wyseure & Ioanna S. Panagea & Abdallah Alaoui & Mark S. Reed & Hedwig van Delden & Melanie Muro & Jane Mills & Oene Oenema & Francisco Areal & Erik van den Elsen & Simone Verzandvo, 2022. "Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe," Land, MDPI, vol. 11(6), pages 1-27, May.
    12. Dennis Junior Choruma & Oghenekaro Nelson Odume, 2019. "Exploring Farmers’ Management Practices and Values of Ecosystem Services in an Agroecosystem Context—A Case Study from the Eastern Cape, South Africa," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    13. Guo, Xiaoxia & Zhu, Annah Lake & Zhu, Xueqin & An, Zhichao & Xu, Yan & Zhuang, Minghao & Wang, Chong & Zhang, Fusuo, 2024. "Promoting sustainable smallholder farming systems in China," Agricultural Systems, Elsevier, vol. 219(C).
    14. Kernecker, Maria & Seufert, Verena & Chapman, Mollie, 2021. "Farmer-centered ecological intensification: Using innovation characteristics to identify barriers and opportunities for a transition of agroecosystems towards sustainability," Agricultural Systems, Elsevier, vol. 191(C).
    15. Carmen Priefer & Juliane Jörissen & Oliver Frör, 2017. "Pathways to Shape the Bioeconomy," Resources, MDPI, vol. 6(1), pages 1-23, February.
    16. Hunggul Yudono Setio Hadi Nugroho & Fitri Nurfatriani & Yonky Indrajaya & Tri Wira Yuwati & Sulistya Ekawati & Mimi Salminah & Hendra Gunawan & Subarudi Subarudi & Markus Kudeng Sallata & Merryana Kid, 2022. "Mainstreaming Ecosystem Services from Indonesia’s Remaining Forests," Sustainability, MDPI, vol. 14(19), pages 1-39, September.
    17. Dong-Gill Kim & Elisa Grieco & Antonio Bombelli & Jonathan E. Hickman & Alberto Sanz-Cobena, 2021. "Challenges and opportunities for enhancing food security and greenhouse gas mitigation in smallholder farming in sub-Saharan Africa. A review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 457-476, April.
    18. Holden , Stein T., 2018. "Fertilizer and Sustainable Intensification in Africa," CLTS Working Papers 1/18, Norwegian University of Life Sciences, Centre for Land Tenure Studies, revised 16 Oct 2019.
    19. Reidsma, Pytrik & Accatino, Francesco & Appel, Franziska & Gavrilescu, Camelia & Krupin, Vitaliy & Manevska Tasevska, Gordana & Meuwissen, Miranda P.M. & Peneva, Mariya & Severini, Simone & Soriano, B, 2023. "Alternative systems and strategies to improve future sustainability and resilience of farming systems across Europe: From adaptation to transformation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 134, pages 1-1.
    20. Feifan Shi & Xinyue Zhao & Qilu Cheng & Hui Lin & Huabao Zheng & Qifa Zhou, 2022. "High-Energy-Density Organic Amendments Enhance Soil Health," IJERPH, MDPI, vol. 19(19), pages 1-11, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:493:y:2024:i:c:s0304380024000899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.