IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v476y2023ics0304380022003556.html
   My bibliography  Save this article

Using thermodynamics to understand the links between energy, information, structure and biodiversity in a human-transformed landscape

Author

Listed:
  • Marull, Joan
  • Pino, Joan
  • Melero, Yolanda
  • Tello, Enric

Abstract

According to classical ecological theory, biodiversity at ecosystem scale can be viewed as the direct product of landscape complexity and information, and the inverse product of energy dissipation. The main difference between natural ecosystems and agroecosystems is the external energy driven by farmers. Hence, it could be argued that biodiversity in biocultural landscapes can be explained by an energy-information-structure model. We developed an Energy-Landscape Integrated Analysis (ELIA) to predict biodiversity levels in human-transformed landscapes. ELIA combines the energy-flow accounting in agricultural landscapes from abioeconomic point of view and landscape ecological metrics that assess the functional structure of the land cover. It uses indicators to assess the energy stored in internal loops (E) and the information incorporated into the energy network (I) to establish a correlation with the resulting patterns and processes in biocultural landscapes (L). We tested the model on biodiversity data using butterflies and birds. The results showed positive correlations between butterfly and bird species richness and ELIA, and, above all, between I and ELIA. This emphasizes how different strategies of agricultural management combined with nature conservation can be employed at certain optimal points in the relationship between the energy-information-structure of biocultural landscapes and the biodiversity present therein. ELIA modelling is the key to a new research agenda that will be very useful for designing more sustainable agroecosystems, metropolitan green infrastructures, and land-use policies, in line with the forthcoming Agroecology Transition planned by the European Commission and the Food and Agriculture Organization.

Suggested Citation

  • Marull, Joan & Pino, Joan & Melero, Yolanda & Tello, Enric, 2023. "Using thermodynamics to understand the links between energy, information, structure and biodiversity in a human-transformed landscape," Ecological Modelling, Elsevier, vol. 476(C).
  • Handle: RePEc:eee:ecomod:v:476:y:2023:i:c:s0304380022003556
    DOI: 10.1016/j.ecolmodel.2022.110257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022003556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Dawei & Wang, Kai & Hu, Jingfei & Xu, Xinming & Long, Yufei, 2018. "Robust stability of closed artificial ecosystem cultivating cabbage realized by ecological thermodynamics and dissipative structure system," Ecological Modelling, Elsevier, vol. 380(C), pages 1-7.
    2. Robin Matthews & Paul Selman, 2006. "Landscape as a Focus for Integrating Human and Environmental Processes," Journal of Agricultural Economics, Wiley Blackwell, vol. 57(2), pages 199-212, July.
    3. Marull, Joan & Cattaneo, Claudio & Gingrich, Simone & de Molina, Manuel González & Guzmán, Gloria I. & Watson, Andrew & MacFadyen, Joshua & Pons, Manel & Tello, Enric, 2019. "Comparative Energy-Landscape Integrated Analysis (ELIA) of past and present agroecosystems in North America and Europe from the 1830s to the 2010s," Agricultural Systems, Elsevier, vol. 175(C), pages 46-57.
    4. Claudio Cattaneo & Joan Marull & Enric Tello, 2018. "Landscape Agroecology. The Dysfunctionalities of Industrial Agriculture and the Loss of the Circular Bioeconomy in the Barcelona Region, 1956–2009," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    5. Helmut Haberl, 2001. "The Energetic Metabolism of Societies: Part II: Empirical Examples," Journal of Industrial Ecology, Yale University, vol. 5(2), pages 71-88, April.
    6. Helmut Haberl, 2001. "The Energetic Metabolism of Societies Part I: Accounting Concepts," Journal of Industrial Ecology, Yale University, vol. 5(1), pages 11-33, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cusso, Xavier & Garrabou, Ramon & Tello, Enric, 2006. "Social metabolism in an agrarian region of Catalonia (Spain) in 1860-1870: Flows, energy balance and land use," Ecological Economics, Elsevier, vol. 58(1), pages 49-65, June.
    2. Haberl, Helmut & Gaube, Veronika & Díaz-Delgado, Ricardo & Krauze, Kinga & Neuner, Angelika & Peterseil, Johannes & Plutzar, Christoph & Singh, Simron J. & Vadineanu, Angheluta, 2009. "Towards an integrated model of socioeconomic biodiversity drivers, pressures and impacts. A feasibility study based on three European long-term socio-ecological research platforms," Ecological Economics, Elsevier, vol. 68(6), pages 1797-1812, April.
    3. Marull, Joan & Cattaneo, Claudio & Gingrich, Simone & de Molina, Manuel González & Guzmán, Gloria I. & Watson, Andrew & MacFadyen, Joshua & Pons, Manel & Tello, Enric, 2019. "Comparative Energy-Landscape Integrated Analysis (ELIA) of past and present agroecosystems in North America and Europe from the 1830s to the 2010s," Agricultural Systems, Elsevier, vol. 175(C), pages 46-57.
    4. Paul Steenwyk & Matthew Kuperus Heun & Paul Brockway & Tânia Sousa & Sofia Henriques, 2022. "The Contributions of Muscle and Machine Work to Land and Labor Productivity in World Agriculture Since 1800," Biophysical Economics and Resource Quality, Springer, vol. 7(2), pages 1-17, June.
    5. Marull, Joan & Torabi, Parisa & Padró, Roc & Alabert, Aureli & La Rota, Maria José & Serrano, Tarik, 2020. "Energy-Landscape Optimization for Land Use Planning. Application in the Barcelona Metropolitan Area," Ecological Modelling, Elsevier, vol. 431(C).
    6. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    7. Haberl, Helmut, 2006. "The global socioeconomic energetic metabolism as a sustainability problem," Energy, Elsevier, vol. 31(1), pages 87-99.
    8. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    9. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    10. Kanianska, Radoslava & Gustafíková, Tatiana & Kizeková, Miriam & Kovanda, Jan, 2011. "Use of material flow accounting for assessment of energy savings: A case of biomass in Slovakia and the Czech Republic," Energy Policy, Elsevier, vol. 39(5), pages 2824-2832, May.
    11. Willi Haas & Hailemariam Birke Andarge, 2017. "More Energy and Less Work, but New Crises: How the Societal Metabolism-Labour Nexus Changes from Agrarian to Industrial Societies," Sustainability, MDPI, vol. 9(7), pages 1-21, June.
    12. Huang, Shu-Li & Lee, Chun-Lin & Chen, Chia-Wen, 2006. "Socioeconomic metabolism in Taiwan: Emergy synthesis versus material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 48(2), pages 166-196.
    13. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    14. Elke Pirgmaier & Julia K. Steinberger, 2019. "Roots, Riots, and Radical Change—A Road Less Travelled for Ecological Economics," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    15. Grabher, Harald F. & Erb, Karlheinz & Singh, Simron & Haberl, Helmut, 2024. "Household energy systems based on biomass: Tracing material flows from source to service in rural Ethiopia," Ecological Economics, Elsevier, vol. 217(C).
    16. Farreny, Ramon & Gabarrell, Xavier & Rieradevall, Joan, 2008. "Energy intensity and greenhouse gas emission of a purchase in the retail park service sector: An integrative approach," Energy Policy, Elsevier, vol. 36(6), pages 1957-1968, June.
    17. Schenk, Niels J. & Moll, Henri C., 2007. "The use of physical indicators for industrial energy demand scenarios," Ecological Economics, Elsevier, vol. 63(2-3), pages 521-535, August.
    18. Han, Wenyi & Geng, Yong & Lu, Yangsiyu & Wilson, Jeffrey & Sun, Lu & Satoshi, Onishi & Geldron, Alain & Qian, Yiying, 2018. "Urban metabolism of megacities: A comparative analysis of Shanghai, Tokyo, London and Paris to inform low carbon and sustainable development pathways," Energy, Elsevier, vol. 155(C), pages 887-898.
    19. Galychyn, Oleksandr, 2022. "Towards sustainable cities: A multi-criteria assessment framework for studying urban metabolism," MPRA Paper 121584, University Library of Munich, Germany, revised 11 May 2022.
    20. Kostas Bithas & Panos Kalimeris & Eleni Koilakou, 2021. "Re‐estimating the energy intensity of growth with implications for sustainable development. The myth of the decoupling effect," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 441-452, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:476:y:2023:i:c:s0304380022003556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.