IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v217y2024ics0921800923003208.html
   My bibliography  Save this article

Household energy systems based on biomass: Tracing material flows from source to service in rural Ethiopia

Author

Listed:
  • Grabher, Harald F.
  • Erb, Karlheinz
  • Singh, Simron
  • Haberl, Helmut

Abstract

Biomass remains the most important energy carrier of rural households in low- and middle-income countries, but its indoor combustion has grave impacts on human health and its extraction is associated with negative effects on ecosystems. Currently, robust and comprehensive data are lacking to trace biomass flows from ecosystems to consumption in households and quantify the related services. This impedes analyses of the social and environmental impacts of biomass use.

Suggested Citation

  • Grabher, Harald F. & Erb, Karlheinz & Singh, Simron & Haberl, Helmut, 2024. "Household energy systems based on biomass: Tracing material flows from source to service in rural Ethiopia," Ecological Economics, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:ecolec:v:217:y:2024:i:c:s0921800923003208
    DOI: 10.1016/j.ecolecon.2023.108057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800923003208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2023.108057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zika, Michael & Erb, Karl-Heinz, 2009. "The global loss of net primary production resulting from human-induced soil degradation in drylands," Ecological Economics, Elsevier, vol. 69(2), pages 310-318, December.
    2. Beyene, Abebe D. & Koch, Steven F., 2013. "Clean fuel-saving technology adoption in urban Ethiopia," Energy Economics, Elsevier, vol. 36(C), pages 605-613.
    3. Ding, Wenguang & Xu, Luan & Ye, Weifeng, 2014. "A comparative study of bioenergy consumption and CO2 emissions in Tibetan region of China," Renewable Energy, Elsevier, vol. 71(C), pages 344-350.
    4. Luis Gabriel Carmona & Kai Whiting & Helmut Haberl & Tânia Sousa, 2021. "The use of steel in the United Kingdom's transport sector: A stock–flow–service nexus case study," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 125-143, February.
    5. Zheng, Xinye & Wei, Chu & Qin, Ping & Guo, Jin & Yu, Yihua & Song, Feng & Chen, Zhanming, 2014. "Characteristics of residential energy consumption in China: Findings from a household survey," Energy Policy, Elsevier, vol. 75(C), pages 126-135.
    6. Sovacool, Benjamin K., 2011. "Conceptualizing urban household energy use: Climbing the "Energy Services Ladder"," Energy Policy, Elsevier, vol. 39(3), pages 1659-1668, March.
    7. Haberl, Helmut & Sprinz, Detlef & Bonazountas, Marc & Cocco, Pierluigi & Desaubies, Yves & Henze, Mogens & Hertel, Ole & Johnson, Richard K. & Kastrup, Ulrike & Laconte, Pierre & Lange, Eckart & Novak, 2012. "Correcting a fundamental error in greenhouse gas accounting related to bioenergy," Energy Policy, Elsevier, vol. 45(C), pages 18-23.
    8. Simons, Andrew M. & Beltramo, Theresa & Blalock, Garrick & Levine, David I., 2017. "Using unobtrusive sensors to measure and minimize Hawthorne effects: Evidence from cookstoves," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 68-80.
    9. Kshirsagar, Milind P. & Kalamkar, Vilas R., 2014. "A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 580-603.
    10. Zhang, Yanjie & Pan, Ying & Li, Meng & Wang, Zhipeng & Wu, Junxi & Zhang, Xianzhou & Cao, Yanan, 2021. "Impacts of human appropriation of net primary production on ecosystem regulating services in Tibet," Ecosystem Services, Elsevier, vol. 47(C).
    11. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    12. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    13. Berhanu, Mesfin & Jabasingh, S. Anuradha & Kifile, Zebene, 2017. "Expanding sustenance in Ethiopia based on renewable energy resources – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1035-1045.
    14. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    15. Liu, Gang & Lucas, Mario & Shen, Lei, 2008. "Rural household energy consumption and its impacts on eco-environment in Tibet: Taking Taktse county as an example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1890-1908, September.
    16. Whiting, Kai & Carmona, Luis Gabriel & Brand-Correa, Lina & Simpson, Edward, 2020. "Illumination as a material service: A comparison between Ancient Rome and early 19th century London," Ecological Economics, Elsevier, vol. 169(C).
    17. Gill-Wiehl, A. & Ray, I. & Kammen, D., 2021. "Is clean cooking affordable? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Kowsari, Reza & Zerriffi, Hisham, 2011. "Three dimensional energy profile:," Energy Policy, Elsevier, vol. 39(12), pages 7505-7517.
    19. Manoj Kumar, & Sachin Kumar, & Tyagi, S.K., 2013. "Design, development and technological advancement in the biomass cookstoves: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 265-285.
    20. Guta, Dawit Diriba, 2014. "Effect of fuelwood scarcity and socio-economic factors on household bio-based energy use and energy substitution in rural Ethiopia," Energy Policy, Elsevier, vol. 75(C), pages 217-227.
    21. Xavier Lemaire, 2018. "Solar home systems and solar lanterns in rural areas of the Global South: What impact?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(5), September.
    22. Mekonnen,Alemu & Beyene,Abebe D. & Bluffstone,Randall Ames & Dissanayake,Sahan & Gebreegziabher,Zenebe & LaFave,Daniel & Martinsson,Peter & Toman,Michael A., 2020. "Improved Biomass Cookstove Use in the Longer Run : Results from a Field Experiment in Rural Ethiopia," Policy Research Working Paper Series 9272, The World Bank.
    23. Gebreegziabher, Zenebe & van Kooten, G. Cornelis & van Soest, Daan P., 2017. "Technological innovation and dispersion: Environmental benefits and the adoption of improved biomass cookstoves in Tigrai, northern Ethiopia," Energy Economics, Elsevier, vol. 67(C), pages 337-345.
    24. Tomer Fishman & Heinz Schandl & Hiroki Tanikawa & Paul Walker & Fridolin Krausmann, 2014. "Accounting for the Material Stock of Nations," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 407-420, May.
    25. Alice Tianbo Zhang & Sasmita Patnaik & Shaily Jha & Shalu Agrawal & Carlos F. Gould & Johannes Urpelainen, 2022. "Evidence of multidimensional gender inequality in energy services from a large-scale household survey in India," Nature Energy, Nature, vol. 7(8), pages 698-707, August.
    26. Dawit Mekonnen & Elizabeth Bryan & Tekie Alemu & Claudia Ringler, 2017. "Food versus fuel: examining tradeoffs in the allocation of biomass energy sources to domestic and productive uses in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(4), pages 425-435, July.
    27. Niu, Shuwen & Li, Zhen & Qiu, Xin & Dai, Runqi & Wang, Xiang & Qiang, Wenli & Hong, Zhenguo, 2019. "Measurement of effective energy consumption in China's rural household sector and policy implication," Energy Policy, Elsevier, vol. 128(C), pages 553-564.
    28. Simron Jit. Singh & Marina Fischer-Kowalski & Marian Chertow, 2020. "Introduction: The Metabolism of Islands," Sustainability, MDPI, vol. 12(22), pages 1-8, November.
    29. Tanner, Andrew M. & Johnston, Alison L., 2017. "The Impact of Rural Electric Access on Deforestation Rates," World Development, Elsevier, vol. 94(C), pages 174-185.
    30. Haas, Reinhard & Nakicenovic, Nebojsa & Ajanovic, Amela & Faber, Thomas & Kranzl, Lukas & Müller, Andreas & Resch, Gustav, 2008. "Towards sustainability of energy systems: A primer on how to apply the concept of energy services to identify necessary trends and policies," Energy Policy, Elsevier, vol. 36(11), pages 4012-4021, November.
    31. Jennifer D. Loo & Lirije Hyseni & Rosebel Ouda & Selline Koske & Ronald Nyagol & Ibrahim Sadumah & Michelle Bashin & Mike Sage & Nigel Bruce & Tamara Pilishvili & Debbi Stanistreet, 2016. "User Perspectives of Characteristics of Improved Cookstoves from a Field Evaluation in Western Kenya," IJERPH, MDPI, vol. 13(2), pages 1-14, January.
    32. Bart Capéau & Stefan Dercon, 1998. "Prices, local measurement units and subsistence consumption in rural surveys: An econometric approach with an application to Ethiopia," CSAE Working Paper Series 1998-10, Centre for the Study of African Economies, University of Oxford.
    33. Maurice Mugabowindekwe & Martin Brandt & Jérôme Chave & Florian Reiner & David L. Skole & Ankit Kariryaa & Christian Igel & Pierre Hiernaux & Philippe Ciais & Ole Mertz & Xiaoye Tong & Sizhuo Li & Gas, 2023. "Nation-wide mapping of tree-level aboveground carbon stocks in Rwanda," Nature Climate Change, Nature, vol. 13(1), pages 91-97, January.
    34. Helmut Haberl, 2001. "The Energetic Metabolism of Societies: Part II: Empirical Examples," Journal of Industrial Ecology, Yale University, vol. 5(2), pages 71-88, April.
    35. Johnson, Nathan G. & Bryden, Kenneth M., 2012. "Energy supply and use in a rural West African village," Energy, Elsevier, vol. 43(1), pages 283-292.
    36. Song, Conghe & Bilsborrow, Richard & Jagger, Pamela & Zhang, Qi & Chen, Xiaodong & Huang, Qingfeng, 2018. "Rural Household Energy Use and Its Determinants in China: How Important Are Influences of Payment for Ecosystem Services vs. Other Factors?," Ecological Economics, Elsevier, vol. 145(C), pages 148-159.
    37. Harald Grabher, 2021. "HANPP trajectories for Ethiopia reveal recent agricultural efficiency gains but high grazing intensity," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5277-5296, April.
    38. Niu, Hewen & He, Yuanqing & Desideri, Umberto & Zhang, Peidong & Qin, Hongyi & Wang, Shijin, 2014. "Rural household energy consumption and its implications for eco-environments in NW China: A case study," Renewable Energy, Elsevier, vol. 65(C), pages 137-145.
    39. Brouwer, Inge D. & Hoorweg, Jan C. & van Liere, Marti J., 1997. "When households run out of fuel: Responses of rural households to decreasing fuelwood availability, Ntcheu District, Malawi," World Development, Elsevier, vol. 25(2), pages 255-266, February.
    40. Muhammad Imran & Azlan Zahid & Salma Mouneer & Orhan Özçatalbaş & Shamsheer Ul Haq & Pomi Shahbaz & Muhammad Muzammil & Muhammad Ramiz Murtaza, 2022. "Relationship between Household Dynamics, Biomass Consumption, and Carbon Emissions in Pakistan," Sustainability, MDPI, vol. 14(11), pages 1-16, May.
    41. G, Balaji & Sharma, Gagandeep & R, Sai Shiva Jayanth, 2022. "Forest cover in India: A victim of technicalities," Ecological Economics, Elsevier, vol. 193(C).
    42. Liu, Wenling & Spaargaren, Gert & Heerink, Nico & Mol, Arthur P.J. & Wang, Can, 2013. "Energy consumption practices of rural households in north China: Basic characteristics and potential for low carbon development," Energy Policy, Elsevier, vol. 55(C), pages 128-138.
    43. Helmut Haberl, 2001. "The Energetic Metabolism of Societies Part I: Accounting Concepts," Journal of Industrial Ecology, Yale University, vol. 5(1), pages 11-33, January.
    44. Xiao Han & Chu Wei, 2021. "Household energy consumption: state of the art, research gaps, and future prospects," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12479-12504, August.
    45. Mondal, Md. Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Rosegrant, Mark, 2017. "Ethiopian power sector development: Renewable based universal electricity access and export strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 11-20.
    46. Wassie, Yibeltal T. & Adaramola, Muyiwa S., 2019. "Potential environmental impacts of small-scale renewable energy technologies in East Africa: A systematic review of the evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 377-391.
    47. Martin Brandt & Compton J. Tucker & Ankit Kariryaa & Kjeld Rasmussen & Christin Abel & Jennifer Small & Jerome Chave & Laura Vang Rasmussen & Pierre Hiernaux & Abdoul Aziz Diouf & Laurent Kergoat & Ol, 2020. "An unexpectedly large count of trees in the West African Sahara and Sahel," Nature, Nature, vol. 587(7832), pages 78-82, November.
    48. Jeuland, Marc & Fetter, T. Robert & Li, Yating & Pattanayak, Subhrendu K. & Usmani, Faraz & Bluffstone, Randall A. & Chávez, Carlos & Girardeau, Hannah & Hassen, Sied & Jagger, Pamela & Jaime, Mónica , 2021. "Is energy the golden thread? A systematic review of the impacts of modern and traditional energy use in low- and middle-income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    49. Haberl, Helmut & Schmid, Martin & Haas, Willi & Wiedenhofer, Dominik & Rau, Henrike & Winiwarter, Verena, 2021. "Stocks, flows, services and practices: Nexus approaches to sustainable social metabolism," Ecological Economics, Elsevier, vol. 182(C).
    50. Elisabeth Dresen & Ben DeVries & Martin Herold & Louis Verchot & Robert Müller, 2014. "Fuelwood Savings and Carbon Emission Reductions by the Use of Improved Cooking Stoves in an Afromontane Forest, Ethiopia," Land, MDPI, vol. 3(3), pages 1-21, September.
    51. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    52. Kaygusuz, K., 2011. "Energy services and energy poverty for sustainable rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 936-947, February.
    53. Adél Strydom & Josephine Kaviti Musango & Paul K. Currie, 2019. "Conceptualizing Household Energy Metabolism: A Methodological Contribution," Energies, MDPI, vol. 12(21), pages 1-19, October.
    54. Daioglou, Vassilis & van Ruijven, Bas J. & van Vuuren, Detlef P., 2012. "Model projections for household energy use in developing countries," Energy, Elsevier, vol. 37(1), pages 601-615.
    55. Reddy, B. Sudhakara, 2015. "Access to modern energy services: An economic and policy framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 198-212.
    56. Jiang, Lu & Xue, Bing & Xing, Ran & Chen, Xingpeng & Song, Lan & Wang, Yutao & Coffman, D’Maris & Mi, Zhifu, 2020. "Rural household energy consumption of farmers and herders in the Qinghai-Tibet Plateau," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    2. Niu, Shuwen & Li, Zhen & Qiu, Xin & Dai, Runqi & Wang, Xiang & Qiang, Wenli & Hong, Zhenguo, 2019. "Measurement of effective energy consumption in China's rural household sector and policy implication," Energy Policy, Elsevier, vol. 128(C), pages 553-564.
    3. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    4. Lu Jiang & Xingpeng Chen & Bing Xue, 2019. "Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    5. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    6. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    7. Wassie, Yibeltal T. & Rannestad, Meley M. & Adaramola, Muyiwa S., 2021. "Determinants of household energy choices in rural sub-Saharan Africa: An example from southern Ethiopia," Energy, Elsevier, vol. 221(C).
    8. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    9. Harry Hoffmann & Götz Uckert & Constance Rybak & Frieder Graef & Klas Sander & Stefan Sieber, 2018. "Efficiency scenarios of charcoal production and consumption – a village case study from Western Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 925-938, August.
    10. Ren, Junqiushi & Xiong, Deyin, 2023. "Do social assistance programs promote the use of clean cooking fuels? Evidence from China's new rural pension scheme," Energy Policy, Elsevier, vol. 182(C).
    11. Ping, Xiaoge & Jiang, Zhigang & Li, Chunwang, 2012. "Social and ecological effects of biomass utilization and the willingness to use clean energy in the eastern Qinghai–Tibet plateau," Energy Policy, Elsevier, vol. 51(C), pages 828-833.
    12. Jiang, Zhixiang & Dai, Yanhui & Luo, Xianxiang & Liu, Guocheng & Wang, Hefang & Zheng, Hao & Wang, Zhenyu, 2017. "Assessment of bioenergy development potential and its environmental impact for rural household energy consumption: A case study in Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1153-1161.
    13. Karanja, Alice & Gasparatos, Alexandros, 2019. "Adoption and impacts of clean bioenergy cookstoves in Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 285-306.
    14. Dagnachew, Anteneh G. & Hof, Andries F. & Lucas, Paul L. & van Vuuren, Detlef P., 2020. "Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits," Energy, Elsevier, vol. 192(C).
    15. Liyew, Kassa W. & Habtu, Nigus G. & Louvet, Yoann & Guta, Dawit D. & Jordan, Ulrike, 2021. "Technical design, costs, and greenhouse gas emissions of solar Injera baking stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Han, Jiashi & Hou, Xiaochao & Zhang, Lei, 2022. "Policy implications of China's rural household coal governance from the perspective of the spillover effect," Energy, Elsevier, vol. 242(C).
    17. Andreas Mayer & Willi Haas & Dominik Wiedenhofer & Fridolin Krausmann & Philip Nuss & Gian Andrea Blengini, 2019. "Measuring Progress towards a Circular Economy: A Monitoring Framework for Economy‐wide Material Loop Closing in the EU28," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 62-76, February.
    18. Lindgren, Samantha, 2024. "Sociocultural determinants of electric cooking in rural Namibia: Recommendations for youth and educational approaches to implementation strategy and policy," Energy Policy, Elsevier, vol. 187(C).
    19. Stefan Bouzarovski & Saska Petrova & Sergio Tirado-Herrero, 2014. "From Fuel Poverty to Energy Vulnerability: The Importance of Services, Needs and Practices," SPRU Working Paper Series 2014-25, SPRU - Science Policy Research Unit, University of Sussex Business School.
    20. Li, Jianglong & Chen, Chang & Liu, Hongxun, 2019. "Transition from non-commercial to commercial energy in rural China: Insights from the accessibility and affordability," Energy Policy, Elsevier, vol. 127(C), pages 392-403.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:217:y:2024:i:c:s0921800923003208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.