IDEAS home Printed from https://ideas.repec.org/p/wdi/papers/2002-493.html
   My bibliography  Save this paper

Modeling Sequences of Long Memory Positive Weakly Stationary Random Variables

Author

Listed:
  • Dmitri Koulikov

Abstract

In this paper we introduce a new class of covariance stationary long-memory models on the positive half-line. The overall structure of the models is related to that of GARCH processes of Engle (1982) and Bollerslev (1986), whereby sequence of random variables of interest have multiplicative shocks structure. Unlike FIGARCH model of Baillie, Bollerslev and Mikkelsen (1996), our models are weakly stationary with non-summable autocovariances and hence belong to the class of long-memory models according to the criteria of McLeod and Hipel (1978). In addition, we are able to ensure positivity of all underlying components of the model, thereby improving on the results of Giraitis, Robinson, and Surgailis (2000). Apart from volatility modeling, the class of models introduced in this paper will find applications in high-frequency financial data econometrics.

Suggested Citation

  • Dmitri Koulikov, 2002. "Modeling Sequences of Long Memory Positive Weakly Stationary Random Variables," William Davidson Institute Working Papers Series 493, William Davidson Institute at the University of Michigan.
  • Handle: RePEc:wdi:papers:2002-493
    as

    Download full text from publisher

    File URL: http://deepblue.lib.umich.edu/bitstream/2027.42/39878/3/wp493.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    3. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(1), pages 29-52, March.
    4. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus, 2000. "Stationary Arch Models: Dependence Structure And Central Limit Theorem," Econometric Theory, Cambridge University Press, vol. 16(1), pages 3-22, February.
    5. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    6. Giraitis, Liudas & Robinson, Peter & Surgailis, Donatas, 2000. "A model for long memory conditional heteroscedasticity," LSE Research Online Documents on Economics 2103, London School of Economics and Political Science, LSE Library.
    7. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(4), pages 549-582, August.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    10. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    11. Giraitis, Liudas & Robinson, Peter M. & Surgailis, Donatas, 2000. "A model for long memory conditional heteroscedasticity," LSE Research Online Documents on Economics 299, London School of Economics and Political Science, LSE Library.
    12. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    13. Chung, Ching-Fan & Baillie, Richard T, 1993. "Small Sample Bias in Conditional Sum-of-Squares Estimators of Fractionally Integrated ARMA Models," Empirical Economics, Springer, vol. 18(4), pages 791-806.
    14. Joann Jasiak, 1996. "Persistence in Intertrade Durations," Working Papers 1999_8, York University, Department of Economics, revised Mar 1999.
    15. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monteiro, André A., 2009. "The econometrics of randomly spaced financial data: a survey," DES - Working Papers. Statistics and Econometrics. WS ws097924, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Indeewara Perera & Javier Hidalgo & Mervyn J. Silvapulle, 2016. "A Goodness-of-Fit Test for a Class of Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1111-1141, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giraitis, Liudas & Leipus, Remigijus & Robinson, Peter M. & Surgailis, Donatas, 2004. "LARCH, leverage, and long memory," LSE Research Online Documents on Economics 294, London School of Economics and Political Science, LSE Library.
    2. Liudas Giraitis, 2004. "LARCH, Leverage, and Long Memory," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 177-210.
    3. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    4. Liudas Giraitis & Remigijus Leipus & Peter M Robinson & Donatas Surgailis, 2003. "LARCH, Leverage and Long Memory," STICERD - Econometrics Paper Series 460, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    5. Liudas Giraitis & Donatas Surgailis & Andrius Škarnulis, 2015. "Integrated ARCH, FIGARCH and AR Models: Origins of Long Memory," Working Papers 766, Queen Mary University of London, School of Economics and Finance.
    6. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, October.
    7. Liudas Giraitis & Donatas Surgailis & Andrius Škarnulis, 2015. "Integrated ARCH, FIGARCH and AR Models: Origins of Long Memory," Working Papers 766, Queen Mary University of London, School of Economics and Finance.
    8. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    9. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    11. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    12. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    13. Peter M Robinson & Paolo Zaffaroni, 2005. "Pseudo-Maximum Likelihood Estimation of ARCH(8) Models," STICERD - Econometrics Paper Series 495, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    14. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    15. Robinson, Peter M. & Zaffaroni, Paolo, 2005. "Pseudo-maximum likelihood estimation of ARCH(∞) models," LSE Research Online Documents on Economics 58182, London School of Economics and Political Science, LSE Library.
    16. Hautsch, Nikolaus & Okhrin, Ostap & Ristig, Alexander, 2012. "Modeling time-varying dependencies between positive-valued high-frequency time series," SFB 649 Discussion Papers 2012-054, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. repec:hum:wpaper:sfb649dp2012-054 is not listed on IDEAS
    18. Zaffaroni, Paolo & d'Italia, Banca, 2003. "Gaussian inference on certain long-range dependent volatility models," Journal of Econometrics, Elsevier, vol. 115(2), pages 199-258, August.
    19. Liudas Giraitis & Peter M Robinson, 2001. "Parametric Estimation under Long-Range Dependence," STICERD - Econometrics Paper Series 416, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. Muyi Li & Wai Keung Li & Guodong Li, 2013. "On Mixture Memory Garch Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 606-624, November.
    21. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    22. Bollerslev, Tim, 2001. "Financial econometrics: Past developments and future challenges," Journal of Econometrics, Elsevier, vol. 100(1), pages 41-51, January.

    More about this item

    Keywords

    conditional heteroscedasticity; long-memory; weak stationarity; econometrics of high-frequency financial data;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wdi:papers:2002-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WDI (email available below). General contact details of provider: https://edirc.repec.org/data/wdumius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.