IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v271y2014icp32-51.html
   My bibliography  Save this article

Emergy evaluations of the global biogeochemical cycles of six biologically active elements and two compounds

Author

Listed:
  • Campbell, Daniel E.
  • Lu, Hongfang
  • Lin, Bin-Le

Abstract

Estimates of the emergy carried by the flows of biologically active elements (BAE) and compounds are needed to accurately evaluate the near and far-field effects of anthropogenic wastes. The transformities and specific emergies of these elements and of their different chemical species are also needed to quantify the inputs to many ecological and economic production functions. In this study, we performed emergy evaluations of the global biogeochemical cycles of the BAE, carbon, C, nitrogen, N, sulfur, S, phosphorus, P, oxygen, O2 and silica, Si, as well as the global cycles of two compounds (+2), methane, CH4 and water, H2O. We assembled budgets for the global flows of the “BAE+2” from the literature for the Preindustrial Era and the Industrial Age. The emergy basis for these elemental flows was obtained by documenting the global inflows of renewable and nonrenewable emergy for the Preindustrial Era (i.e., circa 1850) and for the Industrial Age. The nonrenewable emergy inputs in the Industrial Age were documented using a variable time window corresponding to the period of observation when the different elemental budgets were evaluated. We calculated specific emergies and some transformities of the total flows of the elements and of some of their chemical species. The elemental cycles were diagrammed in Energy Systems Language (ESL) and tables of specific emergies are provided for use in subsequent emergy evaluations. The accuracy of evaluating the global cycles of the BAE+2 at intermediate complexity was assessed by comparison to the results of an earlier detailed analysis of the global N cycle. Joint evaluation of the BAE+2 allowed us to examine these elemental cycles with respect to commonalities and differences in their structure, function, and potential impacts of their perturbations on the global ecosystem. We characterize the coupling of the BAE in terms of a fast biogeochemical loop and a slow geochemical loop, an insight which emerged from the process of diagramming the nitrogen cycle in ESL. Finally, we compared our emergy evaluation results to other means of ranking greenhouse gases (GHGs) and other wastes and developed specific recommendations that more research and management attention should be focused on N2O, S and CH4, while continuing present efforts to better understand and manage CO2 and reactive N.

Suggested Citation

  • Campbell, Daniel E. & Lu, Hongfang & Lin, Bin-Le, 2014. "Emergy evaluations of the global biogeochemical cycles of six biologically active elements and two compounds," Ecological Modelling, Elsevier, vol. 271(C), pages 32-51.
  • Handle: RePEc:eee:ecomod:v:271:y:2014:i:c:p:32-51
    DOI: 10.1016/j.ecolmodel.2013.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013000409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bastianoni, S. & Campbell, D.E. & Ridolfi, R. & Pulselli, F.M., 2009. "The solar transformity of petroleum fuels," Ecological Modelling, Elsevier, vol. 220(1), pages 40-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Hong-fang & Lin, Bin-le & Campbell, Daniel E. & Sagisaka, Masayuki & Ren, Hai, 2016. "Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1060-1072.
    2. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.
    3. Du, Hailong & Yang, Liu & Wang, Wenzhong & Lu, Lunhui & Li, Zhe, 2022. "Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze," Ecological Modelling, Elsevier, vol. 468(C).
    4. Picone, F. & Buonocore, E. & D’Agostaro, R. & Donati, S. & Chemello, R. & Franzese, P.P., 2017. "Integrating natural capital assessment and marine spatial planning: A case study in the Mediterranean sea," Ecological Modelling, Elsevier, vol. 361(C), pages 1-13.
    5. Buller, Luz Selene & Bergier, Ivan & Ortega, Enrique & Moraes, Anibal & Bayma-Silva, Gustavo & Zanetti, Marilia Ribeiro, 2015. "Soil improvement and mitigation of greenhouse gas emissions for integrated crop–livestock systems: Case study assessment in the Pantanal savanna highland, Brazil," Agricultural Systems, Elsevier, vol. 137(C), pages 206-219.
    6. Wu, Xihui & Wu, Faqi & Tong, Xiaogang & Wu, Jia & Sun, Lu & Peng, Xiaoyu, 2015. "Emergy and greenhouse gas assessment of a sustainable, integrated agricultural model (SIAM) for plant, animal and biogas production: Analysis of the ecological recycle of wastes," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 40-50.
    7. Lu, Hongfang & Lin, Bin-Le & Campbell, Daniel E. & Wang, Yanjia & Duan, Wenqi & Han, Taotao & Wang, Jun & Ren, Hai, 2022. "Australia-Japan telecoupling of wind power-based green ammonia for passenger transportation: Efficiency, impacts, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Campbell, Daniel E., 2016. "Emergy baseline for the Earth: A historical review of the science and a new calculation," Ecological Modelling, Elsevier, vol. 339(C), pages 96-125.
    9. Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.
    10. Buonocore, Elvira & Picone, Flavio & Donnarumma, Luigia & Russo, Giovanni F. & Franzese, Pier Paolo, 2019. "Modeling matter and energy flows in marine ecosystems using emergy and eco-exergy methods to account for natural capital value," Ecological Modelling, Elsevier, vol. 392(C), pages 137-146.
    11. Zhang, Binyue & Chen, Bin, 2017. "Sustainability accounting of a household biogas project based on emergy," Applied Energy, Elsevier, vol. 194(C), pages 819-831.
    12. Franzese, Pier Paolo & Buonocore, Elvira & Donnarumma, Luigia & Russo, Giovanni F., 2017. "Natural capital accounting in marine protected areas: The case of the Islands of Ventotene and S. Stefano (Central Italy)," Ecological Modelling, Elsevier, vol. 360(C), pages 290-299.
    13. Paoli, C. & Povero, P. & Burgos, E. & Dapueto, G. & Fanciulli, G. & Massa, F. & Scarpellini, P. & Vassallo, P., 2018. "Natural capital and environmental flows assessment in marine protected areas: The case study of Liguria region (NW Mediterranean Sea)," Ecological Modelling, Elsevier, vol. 368(C), pages 121-135.
    14. Lu, Hongfang & Xu, FengYing & Liu, Hongxiao & Wang, Jun & Campbell, Daniel E. & Ren, Hai, 2019. "Emergy-based analysis of the energy security of China," Energy, Elsevier, vol. 181(C), pages 123-135.
    15. Berrios, Fernando & Campbell, Daniel E. & Ortiz, Marco, 2017. "Emergy evaluation of benthic ecosystems influenced by upwelling in northern Chile: Contributions of the ecosystems to the regional economy," Ecological Modelling, Elsevier, vol. 359(C), pages 146-164.
    16. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rugani, B. & Pulselli, R.M. & Niccolucci, V. & Bastianoni, S., 2011. "Environmental performance of a XIV Century water management system: An emergy evaluation of cultural heritage," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 117-125.
    2. Shah, Syed Mahboob & Liu, Gengyuan & Yang, Qing & Casazza, Marco & Agostinho, Feni & Giannetti, Biagio F., 2021. "Sustainability assessment of agriculture production systems in Pakistan: A provincial-scale energy-based evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    3. Baral, Anil & Bakshi, Bhavik R., 2010. "Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol," Ecological Modelling, Elsevier, vol. 221(15), pages 1807-1818.
    4. Lu, Hong-fang & Lin, Bin-le & Campbell, Daniel E. & Sagisaka, Masayuki & Ren, Hai, 2016. "Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1060-1072.
    5. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    6. Ji Chai & Zhanqi Wang & Hongwei Zhang, 2017. "Integrated Evaluation of Coupling Coordination for Land Use Change and Ecological Security: A Case Study in Wuhan City of Hubei Province, China," IJERPH, MDPI, vol. 14(11), pages 1-21, November.
    7. Fang, Wei & An, Haizhong & Li, Huajiao & Gao, Xiangyun & Sun, Xiaoqi & Zhong, Weiqiong, 2017. "Accessing on the sustainability of urban ecological-economic systems by means of a coupled emergy and system dynamics model: A case study of Beijing," Energy Policy, Elsevier, vol. 100(C), pages 326-337.
    8. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "The roles of countries in the international fossil fuel trade: An emergy and network analysis," Energy Policy, Elsevier, vol. 100(C), pages 365-376.
    9. Asgharipour, Mohammad Reza & Amiri, Zahra & Campbell, Daniel E., 2020. "Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics”," Ecological Modelling, Elsevier, vol. 424(C).
    10. Ricardo Enrique Vega-Azamar & Rabindranarth Romero-López & Mathias Glaus & Norma Angélica Oropeza-García & Robert Hausler, 2015. "Sustainability Assessment of the Residential Land Use in Seven Boroughs of the Island of Montreal, Canada," Sustainability, MDPI, vol. 7(3), pages 1-19, February.
    11. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Dai, Tao & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "Global pattern of the international fossil fuel trade: The evolution of communities," Energy, Elsevier, vol. 123(C), pages 260-270.
    12. Li, Linjun & Lu, Hongfang & Campbell, Daniel E. & Ren, Hai, 2011. "Methods for estimating the uncertainty in emergy table-form models," Ecological Modelling, Elsevier, vol. 222(15), pages 2615-2622.
    13. Amaral, Luís P. & Martins, Nélson & Gouveia, Joaquim B., 2016. "A review of emergy theory, its application and latest developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 882-888.
    14. Saladini, Fabrizio & Gopalakrishnan, Varsha & Bastianoni, Simone & Bakshi, Bhavik R., 2018. "Synergies between industry and nature – An emergy evaluation of a biodiesel production system integrated with ecological systems," Ecosystem Services, Elsevier, vol. 30(PB), pages 257-266.
    15. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    16. Fonseca, Ana Margarida P. & Marques, Carlos A.F. & Pinto-Correia, Teresa & Guiomar, Nuno & Campbell, Daniel E., 2019. "Emergy evaluation for decision-making in complex multifunctional farming systems," Agricultural Systems, Elsevier, vol. 171(C), pages 1-12.
    17. Zhang, Zilong & Chen, Xingpeng & Heck, Peter & Xue, Bing & Liu, Ye, 2015. "Empirical study on the environmental pressure versus economic growth in China during 1991–2012," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 182-193.
    18. Gustavo Bustamante & Biagio Fernando Giannetti & Feni Agostinho & Gengyuan Liu & Cecília M. V. B. Almeida, 2022. "Prioritizing Cleaner Production Actions towards Circularity: Combining LCA and Emergy in the PET Production Chain," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    19. Ingwersen, Wesley W., 2010. "Uncertainty characterization for emergy values," Ecological Modelling, Elsevier, vol. 221(3), pages 445-452.
    20. Liu, Jin’e & Lin, Bin-Le & Sagisaka, Masayuki, 2012. "Sustainability assessment of bioethanol and petroleum fuel production in Japan based on emergy analysis," Energy Policy, Elsevier, vol. 44(C), pages 23-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:271:y:2014:i:c:p:32-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.