IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v468y2022ics0304380022000692.html
   My bibliography  Save this article

Metacommunity robustness to invasion in mutualistic and antagonistic networks

Author

Listed:
  • Liu, Xiaoqian
  • Bearup, Daniel
  • Liao, Jinbao

Abstract

One of the most significant threats to biodiversity is alien species invasion, and consequently understanding and predicting biological invasions has become an important issue in ecology. While numerous studies have explored the effect of community diversity and structure on invasion success, a systematic comparative analysis on system robustness to invasion between antagonistic and mutualistic networks from a metacommunity perspective is still lacking. Here we seek to address this gap using patch-dynamic models, which integrate local communities into the landscape metacommunity. We find that both mutualistic and antagonistic metacommunities displayed qualitatively similar responses to species invasion, except for animal invasion in antagonistic networks. Specifically, increasing network size and connectance generally promoted metacommunity persistence, while nestedness (negative) and modularity (positive) had contrasting effects on metacommunity robustness to invasion. However, these structural effects were strongly dependent on the generalization levels of both invader and the resident species it displaces. Overall, this study provides new and more general insights into how alien species are well integrated into native networks and how they affect metacommunity persistence.

Suggested Citation

  • Liu, Xiaoqian & Bearup, Daniel & Liao, Jinbao, 2022. "Metacommunity robustness to invasion in mutualistic and antagonistic networks," Ecological Modelling, Elsevier, vol. 468(C).
  • Handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000692
    DOI: 10.1016/j.ecolmodel.2022.109949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022000692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.109949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong Wei & Tianjie Yang & Ville-Petri Friman & Yangchun Xu & Qirong Shen & Alexandre Jousset, 2015. "Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    2. Ilkka Hanski & Otso Ovaskainen, 2000. "The metapopulation capacity of a fragmented landscape," Nature, Nature, vol. 404(6779), pages 755-758, April.
    3. Fernanda S. Valdovinos & Eric L. Berlow & Pablo Moisset de Espanés & Rodrigo Ramos-Jiliberto & Diego P. Vázquez & Neo D. Martinez, 2018. "Species traits and network structure predict the success and impacts of pollinator invasions," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Giovanni Strona & Kevin D. Lafferty, 2016. "Environmental change makes robust ecological networks fragile," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    5. Giovanni Strona & Paolo Galli & Simone Fattorini, 2013. "Fish parasites resolve the paradox of missing coextinctions," Nature Communications, Nature, vol. 4(1), pages 1-5, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lin & Li, Jia & Wang, Ting & Liao, Jinbao, 2023. "A positive complexity-stability relationship emerges in pollinator-plant-consumer tripartite networks disturbed by plant invasion," Ecological Modelling, Elsevier, vol. 484(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Strona & Pieter S. A. Beck & Mar Cabeza & Simone Fattorini & François Guilhaumon & Fiorenza Micheli & Simone Montano & Otso Ovaskainen & Serge Planes & Joseph A. Veech & Valeriano Parravicini, 2021. "Ecological dependencies make remote reef fish communities most vulnerable to coral loss," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Laguna, M.F. & Abramson, G. & Kuperman, M.N. & Lanata, J.L. & Monjeau, J.A., 2015. "Mathematical model of livestock and wildlife: Predation and competition under environmental disturbances," Ecological Modelling, Elsevier, vol. 309, pages 110-117.
    3. Joyce Maschinski & Michael Ross & Hong Liu & Joe O’Brien & Eric Wettberg & Kristin Haskins, 2011. "Sinking ships: conservation options for endemic taxa threatened by sea level rise," Climatic Change, Springer, vol. 107(1), pages 147-167, July.
    4. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Cornell, Stephen J. & Ovaskainen, Otso, 2008. "Exact asymptotic analysis for metapopulation dynamics on correlated dynamic landscapes," Theoretical Population Biology, Elsevier, vol. 74(3), pages 209-225.
    6. Christensen, Claire & Albert, István & Grenfell, Bryan & Albert, Réka, 2010. "Disease dynamics in a dynamic social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2663-2674.
    7. Bodin, Örjan & Saura, Santiago, 2010. "Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments," Ecological Modelling, Elsevier, vol. 221(19), pages 2393-2405.
    8. Ohlmann, Marc & Munoz, François & Massol, François & Thuiller, Wilfried, 2024. "Assessing mutualistic metacommunity capacity by integrating spatial and interaction networks," Theoretical Population Biology, Elsevier, vol. 156(C), pages 22-39.
    9. Runtan Cheng & Lu Wang & Shenglong Le & Yifan Yang & Can Zhao & Xiangqi Zhang & Xin Yang & Ting Xu & Leiting Xu & Petri Wiklund & Jun Ge & Dajiang Lu & Chenhong Zhang & Luonan Chen & Sulin Cheng, 2022. "A randomized controlled trial for response of microbiome network to exercise and diet intervention in patients with nonalcoholic fatty liver disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Gaaff, Aris & Reinhard, Stijn, 2012. "Incorporating the value of ecological networks into cost–benefit analysis to improve spatially explicit land-use planning," Ecological Economics, Elsevier, vol. 73(C), pages 66-74.
    12. Munoz, François & Cheptou, Pierre-Olivier & Kjellberg, Finn, 2007. "Spectral analysis of simulated species distribution maps provides insights into metapopulation dynamics," Ecological Modelling, Elsevier, vol. 205(3), pages 314-322.
    13. Ugo De Corato, 2020. "RETRACTED: Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review," Sustainability, MDPI, vol. 13(1), pages 1, December.
    14. Ventura, Paulo C. & Tokuda, Eric K. & da F. Costa, Luciano & Rodrigues, Francisco A., 2023. "A Markov chain for metapopulations of small sizes with attraction landscape," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Xiaogang Li & Dele Chen & Víctor J. Carrión & Daniel Revillini & Shan Yin & Yuanhua Dong & Taolin Zhang & Xingxiang Wang & Manuel Delgado-Baquerizo, 2023. "Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Wang, Xiangrong & Peron, Thomas & Dubbeldam, Johan L.A. & Kéfi, Sonia & Moreno, Yamir, 2023. "Interspecific competition shapes the structural stability of mutualistic networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    17. Tao Wen & Penghao Xie & Hongwei Liu & Ting Liu & Mengli Zhao & Shengdie Yang & Guoqing Niu & Lauren Hale & Brajesh K. Singh & George A. Kowalchuk & Qirong Shen & Jun Yuan, 2023. "Tapping the rhizosphere metabolites for the prebiotic control of soil-borne bacterial wilt disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Elina Numminen & Anna-Liisa Laine, 2020. "The spread of a wild plant pathogen is driven by the road network," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-21, March.
    19. Alexander Korotkov & Sergei Petrovskii, 2023. "Extinctions in a Metapopulation with Nonlinear Dispersal Coupling," Mathematics, MDPI, vol. 11(20), pages 1-22, October.
    20. Xingzhao Liu & Guimei Yang & Qingmin Que & Qi Wang & Zengke Zhang & Liujing Huang, 2022. "How Do Landscape Heterogeneity, Community Structure, and Topographical Factors Contribute to the Plant Diversity of Urban Remnant Vegetation at Different Scales?," IJERPH, MDPI, vol. 19(21), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.