IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v460y2021ics0304380021002908.html
   My bibliography  Save this article

Identifying influential parameters of a multi-species fish size spectrum model for a northern temperate lake through sensitivity analyses

Author

Listed:
  • Benoit, David M.
  • Giacomini, Henrique C.
  • Chu, Cindy
  • Jackson, Donald A.

Abstract

Ecosystem-based approaches that take species interactions into account have shifted to the forefront of fisheries modelling and management in recent years. As a result, multispecies size spectrum models have been increasingly used to explore impacts of fishing on marine community dynamics. The use of these models, which has been facilitated by the development of the R package mizer, requires the estimation of species-specific parameters related to growth, reproduction, and feeding. These parameters, which may be estimated from imperfect information, may contribute to model uncertainty and thus reduce the value of information available for management purposes. In this study of a freshwater fishery, we conduct a comprehensive global sensitivity analysis pairing the Morris and Sobol methods to identify life-history parameters having the largest influence on model outputs. Here, we focus on (i) the size spectrum slope, (ii) the scatter around the linear relationship of the size spectrum, (iii) total biomass, and (iv) species diversity. We found that parameters relating to growth, namely the von Bertalanffy growth coefficient and asymptotic mass, had the greatest influence on our size spectrum model results. This was particularly true for top predators and the most abundant species. Our results suggest that estimation of growth parameters of top predators be given priority to reduce uncertainty in model output, and ultimately, fisheries management.

Suggested Citation

  • Benoit, David M. & Giacomini, Henrique C. & Chu, Cindy & Jackson, Donald A., 2021. "Identifying influential parameters of a multi-species fish size spectrum model for a northern temperate lake through sensitivity analyses," Ecological Modelling, Elsevier, vol. 460(C).
  • Handle: RePEc:eee:ecomod:v:460:y:2021:i:c:s0304380021002908
    DOI: 10.1016/j.ecolmodel.2021.109740
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021002908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Axel G. Rossberg & Ursula Gaedke & Pavel Kratina, 2019. "Dome patterns in pelagic size spectra reveal strong trophic cascades," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Geoffrey B. West & James H. Brown & Brian J. Enquist, 2001. "A general model for ontogenetic growth," Nature, Nature, vol. 413(6856), pages 628-631, October.
    3. Ciric, C. & Ciffroy, P. & Charles, S., 2012. "Use of sensitivity analysis to identify influential and non-influential parameters within an aquatic ecosystem model," Ecological Modelling, Elsevier, vol. 246(C), pages 119-130.
    4. Mesnil, Benoit, 2012. "The hesitant emergence of maximum sustainable yield (MSY) in fisheries policies in Europe," Marine Policy, Elsevier, vol. 36(2), pages 473-480.
    5. DeJonge, Kendall C. & Ascough, James C. & Ahmadi, Mehdi & Andales, Allan A. & Arabi, Mazdak, 2012. "Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments," Ecological Modelling, Elsevier, vol. 231(C), pages 113-125.
    6. Morris, David J. & Speirs, Douglas C. & Cameron, Angus I. & Heath, Michael R., 2014. "Global sensitivity analysis of an end-to-end marine ecosystem model of the North Sea: Factors affecting the biomass of fish and benthos," Ecological Modelling, Elsevier, vol. 273(C), pages 251-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behnam Pourahmadi & Joanna Kalkowska, 2022. "Characterizing the Relationship between Growth and Development in the Context of Strategic Management via Systems Thinking: A Systematic Literature Review," Sustainability, MDPI, vol. 14(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Xuan & Zou, Rui & Guo, Huaicheng, 2016. "Global sensitivity analysis of a three-dimensional nutrients-algae dynamic model for a large shallow lake," Ecological Modelling, Elsevier, vol. 327(C), pages 74-84.
    2. Ahmadi, Mehdi & Ascough, James C. & DeJonge, Kendall C. & Arabi, Mazdak, 2014. "Multisite-multivariable sensitivity analysis of distributed watershed models: Enhancing the perceptions from computationally frugal methods," Ecological Modelling, Elsevier, vol. 279(C), pages 54-67.
    3. Lopez de Gamiz-Zearra, A. & Hansen, C. & Corrales, X. & Andonegi, E., 2024. "Increasing the reliability of the Bay of Biscay Atlantis model: A sensitivity analysis to parameters perturbations using a Morris screening approach," Ecological Modelling, Elsevier, vol. 488(C).
    4. Morris, David J. & Speirs, Douglas C. & Cameron, Angus I. & Heath, Michael R., 2014. "Global sensitivity analysis of an end-to-end marine ecosystem model of the North Sea: Factors affecting the biomass of fish and benthos," Ecological Modelling, Elsevier, vol. 273(C), pages 251-263.
    5. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    6. Barberis, L. & Condat, C.A., 2012. "Describing interactive growth using vector universalities," Ecological Modelling, Elsevier, vol. 227(C), pages 56-63.
    7. Sigourney, Douglas B. & Munch, Stephan B. & Letcher, Benjamin H., 2012. "Combining a Bayesian nonparametric method with a hierarchical framework to estimate individual and temporal variation in growth," Ecological Modelling, Elsevier, vol. 247(C), pages 125-134.
    8. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    9. Carl-Johan Dalgaard & Holger Strulik, 2014. "Physiological Constraints and Comparative Economic Development," Discussion Papers 14-21, University of Copenhagen. Department of Economics.
    10. Carl-Johan Dalgaard & Holger Strulik, 2015. "The physiological foundations of the wealth of nations," Journal of Economic Growth, Springer, vol. 20(1), pages 37-73, March.
    11. Ribeiro, Fabiano L. & Ribeiro, Kayo N., 2015. "A one dimensional model of population growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 201-210.
    12. Norbert Brunner & Manfred Kühleitner & Werner Georg Nowak & Katharina Renner-Martin & Klaus Scheicher, 2019. "Comparing growth patterns of three species: Similarities and differences," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-9, October.
    13. Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
    14. Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).
    15. Bailey, Jennifer, 2016. "Adventures in cross-disciplinary studies: Grand strategy and fisheries management," Marine Policy, Elsevier, vol. 63(C), pages 18-27.
    16. Giacomini, Henrique C. & DeAngelis, Donald L. & Trexler, Joel C. & Petrere, Miguel, 2013. "Trait contributions to fish community assembly emerge from trophic interactions in an individual-based model," Ecological Modelling, Elsevier, vol. 251(C), pages 32-43.
    17. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    18. Mark T. Gibbs, 2016. "Applying the concept of State of Good Repair to the management of ecological infrastructure," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(6), pages 1091-1106, June.
    19. Kumar, Vijay & Kumari, Beena, 2015. "Mathematical modelling of the seasonal variability of plankton and forage fish in the Gulf of Kachchh," Ecological Modelling, Elsevier, vol. 313(C), pages 237-250.
    20. Chopin, Pierre & Blazy, Jean-Marc & Guindé, Loïc & Wery, Jacques & Doré, Thierry, 2017. "A framework for designing multi-functional agricultural landscapes: Application to Guadeloupe Island," Agricultural Systems, Elsevier, vol. 157(C), pages 316-329.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:460:y:2021:i:c:s0304380021002908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.