IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v455y2021ics0304380021001939.html
   My bibliography  Save this article

Plant competition under simultaneous adaptation by herbivores and pollinators

Author

Listed:
  • Revilla, Tomás A.
  • Marcou, Thomas
  • Křivan, Vlastimil

Abstract

Two plants can influence one another indirectly by affecting population dynamics of shared exploiters and/or shared mutualists, giving rise to apparent competition or apparent mutualism, respectively. Indirect interactions between plants also occur when the preferences of exploiters and mutualists adapt to changes in relative plant densities. Here we study simultaneous effects of adaptive herbivore and pollinator preferences on the dynamics of two competing plant populations. As a result of feedbacks between plant dynamics and adaptive animal preferences, plants coexist at alternative stable states. This outcome is favored at low abundances of herbivores and pollinators when consumers tend to specialize on a single plant. As herbivore and pollinator abundances increase, generalism becomes more common. This promotes plant coexistence by balancing antagonistic and mutualistic effects between plants. Plant community dynamics become also more predictable due to reduction in the number of alternative stable states. This shows that the global decline in insect populations can lead to structural changes in plant communities that are difficult to predict.

Suggested Citation

  • Revilla, Tomás A. & Marcou, Thomas & Křivan, Vlastimil, 2021. "Plant competition under simultaneous adaptation by herbivores and pollinators," Ecological Modelling, Elsevier, vol. 455(C).
  • Handle: RePEc:eee:ecomod:v:455:y:2021:i:c:s0304380021001939
    DOI: 10.1016/j.ecolmodel.2021.109634
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021001939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin McCann & Alan Hastings & Gary R. Huxel, 1998. "Weak trophic interactions and the balance of nature," Nature, Nature, vol. 395(6704), pages 794-798, October.
    2. Ugo Bastolla & Miguel A. Fortuna & Alberto Pascual-García & Antonio Ferrera & Bartolo Luque & Jordi Bascompte, 2009. "The architecture of mutualistic networks minimizes competition and increases biodiversity," Nature, Nature, vol. 458(7241), pages 1018-1020, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Revilla, Tomás A. & Křivan, Vlastimil, 2022. "Prey–predator dynamics with adaptive protection mutualism," Applied Mathematics and Computation, Elsevier, vol. 433(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González, Cecilia, 2023. "Evolution of the concept of ecological integrity and its study through networks," Ecological Modelling, Elsevier, vol. 476(C).
    2. Cristina Fiera & Jan Christian Habel & Werner Ulrich, 2018. "Neutral colonisations drive high beta-diversity in cavernicole springtails (Collembola)," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-12, January.
    3. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    4. Benadi, Gita & Blüthgen, Nico & Hovestadt, Thomas & Poethke, Hans-Joachim, 2013. "Contrasting specialization–stability relationships in plant–animal mutualistic systems," Ecological Modelling, Elsevier, vol. 258(C), pages 65-73.
    5. Dai, Chuanjun & Zhao, Min & Chen, Lansun, 2012. "Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 83-97.
    6. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    8. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Miehls, Andrea L. Jaeger & Mason, Doran M. & Frank, Kenneth A. & Krause, Ann E. & Peacor, Scott D. & Taylor, William W., 2009. "Invasive species impacts on ecosystem structure and function: A comparison of the Bay of Quinte, Canada, and Oneida Lake, USA, before and after zebra mussel invasion," Ecological Modelling, Elsevier, vol. 220(22), pages 3182-3193.
    10. Fabio Saracco & Riccardo Di Clemente & Andrea Gabrielli & Tiziano Squartini, 2015. "Detecting early signs of the 2007-2008 crisis in the world trade," Papers 1508.03533, arXiv.org, revised Jul 2016.
    11. Timothée Poisot & Sonia Kéfi & Serge Morand & Michal Stanko & Pablo A Marquet & Michael E Hochberg, 2015. "A Continuum of Specialists and Generalists in Empirical Communities," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    12. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Christopher C Wilmers & Wayne M Getz, 2005. "Gray Wolves as Climate Change Buffers in Yellowstone," PLOS Biology, Public Library of Science, vol. 3(4), pages 1-1, March.
    14. Scotti, Marco & Bondavalli, Cristina & Bodini, Antonio, 2009. "Linking trophic positions and flow structure constraints in ecological networks: Energy transfer efficiency or topology effect?," Ecological Modelling, Elsevier, vol. 220(21), pages 3070-3080.
    15. Chun-Wei Chang & Takeshi Miki & Hao Ye & Sami Souissi & Rita Adrian & Orlane Anneville & Helen Agasild & Syuhei Ban & Yaron Be’eri-Shlevin & Yin-Ru Chiang & Heidrun Feuchtmayr & Gideon Gal & Satoshi I, 2022. "Causal networks of phytoplankton diversity and biomass are modulated by environmental context," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Hartvig, Martin & Andersen, Ken Haste, 2013. "Coexistence of structured populations with size-based prey selection," Theoretical Population Biology, Elsevier, vol. 89(C), pages 24-33.
    17. Yacine, Youssef & Loeuille, Nicolas, 2022. "Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions," Ecological Modelling, Elsevier, vol. 465(C).
    18. Sebastián Bustos & Charles Gomez & Ricardo Hausmann & César A Hidalgo, 2012. "The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    19. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:455:y:2021:i:c:s0304380021001939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.