IDEAS home Printed from https://ideas.repec.org/a/aph/ajpbhl/10.2105-ajph.2006.100081_6.html
   My bibliography  Save this article

The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality

Author

Listed:
  • Kaiser, R.
  • Le Tertre, A.
  • Schwartz, J.
  • Gotway, C.A.
  • Daley, W.R.
  • Rubin, C.H.

Abstract

OBJECTIVES: We sought to reexamine the effects of the 1995 Chicago heat wave on all-cause and cause-specific mortality, including mortality displacement, using advanced time-series analysis methods. METHODS: We used Poisson regression with penalized regression splines to model excess mortality and mortality displacement over a 50-day period centered on the day in which the heat wave temperature peaked, adjusting for meteorological and other variables. We controlled for temporal trends by using daily mortality data during 1993-1997. We estimated relative risks (RRs) with reference to the first day of the 50-day period. RESULTS: We estimated that there were 692 excess deaths from June 21, 1995, to August 10, 1995; 26% of these deaths were owing to mortality displacement. RR for all-cause mortality on the day with peak mortality was 1.74 (95% confidence interval=1.67, 1.81). Risk of heat-related death was significantly higher among Blacks, and mortality displacement was substantially lower. CONCLUSIONS: The 1995 Chicago heat wave substantially effected all-cause and cause-specific mortality, but mortality displacement was limited. Mortality risks and displacement affected Blacks disproportionally. Appropriately targeted interventions may have a tangible effect on life expectancy.

Suggested Citation

  • Kaiser, R. & Le Tertre, A. & Schwartz, J. & Gotway, C.A. & Daley, W.R. & Rubin, C.H., 2007. "The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality," American Journal of Public Health, American Public Health Association, vol. 97(S1), pages 158-162.
  • Handle: RePEc:aph:ajpbhl:10.2105/ajph.2006.100081_6
    DOI: 10.2105/AJPH.2006.100081
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.2105/AJPH.2006.100081
    Download Restriction: no

    File URL: https://libkey.io/10.2105/AJPH.2006.100081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Liotta & Maria Chiara Inzerilli & Leonardo Palombi & Olga Madaro & Stefano Orlando & Paola Scarcella & Daniela Betti & Maria Cristina Marazzi, 2018. "Social Interventions to Prevent Heat-Related Mortality in the Older Adult in Rome, Italy: A Quasi-Experimental Study," IJERPH, MDPI, vol. 15(4), pages 1-13, April.
    2. Leila Heidari & Andrea Winquist & Mitchel Klein & Cassandra O’Lenick & Andrew Grundstein & Stefanie Ebelt Sarnat, 2016. "Susceptibility to Heat-Related Fluid and Electrolyte Imbalance Emergency Department Visits in Atlanta, Georgia, USA," IJERPH, MDPI, vol. 13(10), pages 1-17, October.
    3. García-Witulski, Christian & Rabassa, Mariano Javier & Conte Grand, Mariana & Rozenberg, Julie, 2023. "Valuing mortality attributable to present and future temperature extremes in Argentina," Economics & Human Biology, Elsevier, vol. 51(C).
    4. Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
    5. Sinha, Paramita & Coville, Robert C. & Hirabayashi, Satoshi & Lim, Brian & Endreny, Theodore A. & Nowak, David J., 2021. "Modeling lives saved from extreme heat by urban tree cover✰," Ecological Modelling, Elsevier, vol. 449(C).
    6. Tina Ho & Andrew Noymer, 2017. "Summertime, and the livin’ is easy: Winter and summer pseudoseasonal life expectancy in the United States," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(45), pages 1445-1476.
    7. Scott Sheridan & Adam Kalkstein, 2010. "Seasonal variability in heat-related mortality across the United States," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 291-305, November.
    8. Anja Stotz & Kilian Rapp & Juha Oksa & Dawn A. Skelton & Nina Beyer & Jochen Klenk & Clemens Becker & Ulrich Lindemann, 2014. "Effect of a Brief Heat Exposure on Blood Pressure and Physical Performance of Older Women Living in the Community—A Pilot-Study," IJERPH, MDPI, vol. 11(12), pages 1-9, December.
    9. Simon Gosling & Jason Lowe & Glenn McGregor & Mark Pelling & Bruce Malamud, 2009. "Associations between elevated atmospheric temperature and human mortality: a critical review of the literature," Climatic Change, Springer, vol. 92(3), pages 299-341, February.
    10. Amruta Nori-Sarma & Tarik Benmarhnia & Ajit Rajiva & Gulrez Shah Azhar & Prakash Gupta & Mangesh S. Pednekar & Michelle L. Bell, 2019. "Advancing our Understanding of Heat Wave Criteria and Associated Health Impacts to Improve Heat Wave Alerts in Developing Country Settings," IJERPH, MDPI, vol. 16(12), pages 1-13, June.
    11. Konstantinos Ziliaskopoulos & Christos Petropoulos & Chrysi Laspidou, 2024. "Enhancing Sustainability: Quantifying and Mapping Vulnerability to Extreme Heat Using Socioeconomic Factors at the National, Regional and Local Levels," Sustainability, MDPI, vol. 16(17), pages 1-16, September.
    12. Zhongwei Zhao & Yuan Zhu & Edward Jow-Chung Tu, 2015. "Daily mortality changes in Taiwan in the 1970s: An examination of the relationship between temperature and mortality," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 13(1), pages 71-90.
    13. John Nairn & Bertram Ostendorf & Peng Bi, 2018. "Performance of Excess Heat Factor Severity as a Global Heatwave Health Impact Index," IJERPH, MDPI, vol. 15(11), pages 1-26, November.
    14. Ulrich Lindemann & Anja Stotz & Nina Beyer & Juha Oksa & Dawn A. Skelton & Clemens Becker & Kilian Rapp & Jochen Klenk, 2017. "Effect of Indoor Temperature on Physical Performance in Older Adults during Days with Normal Temperature and Heat Waves," IJERPH, MDPI, vol. 14(2), pages 1-9, February.
    15. Jürgen Junk & Klaus Goergen & Andreas Krein, 2019. "Future Heat Waves in Different European Capitals Based on Climate Change Indicators," IJERPH, MDPI, vol. 16(20), pages 1-13, October.
    16. Ying Li & Cem Akkus & Xinhua Yu & Andrew Joyner & Jennifer Kmet & David Sweat & Chunrong Jia, 2019. "Heatwave Events and Mortality Outcomes in Memphis, Tennessee: Testing Effect Modification by Socioeconomic Status and Urbanicity," IJERPH, MDPI, vol. 16(22), pages 1-14, November.
    17. Laurence Kalkstein & Scott Greene & David Mills & Jason Samenow, 2011. "An evaluation of the progress in reducing heat-related human mortality in major U.S. cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(1), pages 113-129, January.
    18. Ine Van den Wyngaert & Katrien De Troeyer & Bert Vaes & Mahmoud Alsaiqali & Bert Van Schaeybroeck & Rafiq Hamdi & Lidia Casas Ruiz & Gijs Van Pottelbergh, 2021. "Impact of Heat Waves on Hospitalisation and Mortality in Nursing Homes: A Case-Crossover Study," IJERPH, MDPI, vol. 18(20), pages 1-8, October.
    19. Kathryn C. Conlon & Kristina W. Kintziger & Meredith Jagger & Lydia Stefanova & Christopher K. Uejio & Charles Konrad, 2016. "Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health," IJERPH, MDPI, vol. 13(8), pages 1-23, August.
    20. Thomas Longden, 2018. "Measuring temperature-related mortality using endogenously determined thresholds," Climatic Change, Springer, vol. 150(3), pages 343-375, October.
    21. Sumi Hoshiko & Paul English & Daniel Smith & Roger Trent, 2010. "A simple method for estimating excess mortality due to heat waves, as applied to the 2006 California heat wave," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 55(2), pages 133-137, April.
    22. Camila I. Donatti & Celia A. Harvey & David Hole & Steven N. Panfil & Hanna Schurman, 2020. "Indicators to measure the climate change adaptation outcomes of ecosystem-based adaptation," Climatic Change, Springer, vol. 158(3), pages 413-433, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aph:ajpbhl:10.2105/ajph.2006.100081_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://www.apha.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.