IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v444y2021ics0304380021000466.html
   My bibliography  Save this article

Study of a factored general logistic model of population dynamics with inter- and intraspecific interactions

Author

Listed:
  • Pastor, Juan Manuel
  • Stucchi, Luciano
  • Galeano, Javier

Abstract

The logistic equation is the simplest way to limit the growth in population dynamics. When ecological interactions come into play different types of models can be found, e.g. for consumer-resource systems the generalized Lotka–Volterra equation is widely used to model direct competition or predator–prey systems, and for mutualistic systems a functional response that limits the unbounded growth due to the mutual benefit is needed (usually Holling’s type II). Based on a recent general model of population dynamics with intraspecific interactions we present a factored general logistic model of population dynamics with inter- and intraspecific interactions. A major advantage of this model is that it can be used for any type of interspecific ecological interaction and also for beneficial or detrimental intraspecific interaction, and always in a bounded way. In this study we write a general logistic model in a factored way to obtain the stationary solutions by a system of simple linear equations and we formulate the analytical expression for the Jacobian matrix of all the stationary solutions for an arbitrary number of populations. We also show that this simple model can be used to represent complex ecological systems; as an illustration we study some examples such as a stable direct competition with intraspecific cooperation, a predator–prey system with cooperative preys, a mutualism with harmful intraspecific interactions and a real bacterial system with 4 populations.

Suggested Citation

  • Pastor, Juan Manuel & Stucchi, Luciano & Galeano, Javier, 2021. "Study of a factored general logistic model of population dynamics with inter- and intraspecific interactions," Ecological Modelling, Elsevier, vol. 444(C).
  • Handle: RePEc:eee:ecomod:v:444:y:2021:i:c:s0304380021000466
    DOI: 10.1016/j.ecolmodel.2021.109475
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021000466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luciano Stucchi & Juan Manuel Pastor & Javier García-Algarra & Javier Galeano, 2020. "A General Model of Population Dynamics Accounting for Multiple Kinds of Interaction," Complexity, Hindawi, vol. 2020, pages 1-14, July.
    2. Stucchi, Luciano & Giménez-Benavides, Luis & Galeano, Javier, 2019. "The role of parasitoids in a nursery-pollinator system: A population dynamics model," Ecological Modelling, Elsevier, vol. 396(C), pages 50-58.
    3. Moore, Christopher M. & Catella, Samantha A. & Abbott, Karen C., 2018. "Population dynamics of mutualism and intraspecific density dependence: How θ-logistic density dependence affects mutualistic positive feedback," Ecological Modelling, Elsevier, vol. 368(C), pages 191-197.
    4. José M. Montoya & Stuart L. Pimm & Ricard V. Solé, 2006. "Ecological networks and their fragility," Nature, Nature, vol. 442(7100), pages 259-264, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi Liu & Rongwei Guo, 2023. "Stabilization of the GLV System with Asymptotically Unbounded External Disturbances," Mathematics, MDPI, vol. 11(21), pages 1-12, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zechen Wang & Zhenqin Shi & Jingeng Huo & Wenbo Zhu & Yanhui Yan & Na Ding, 2023. "Construction and Optimization of an Ecological Network in Funiu Mountain Area Based on MSPA and MCR Models, China," Land, MDPI, vol. 12(8), pages 1-13, August.
    2. Xiaolong Lin & Zongmu Yao & Xinguang Wang & Shangqi Xu & Chunjie Tian & Lei Tian, 2021. "Water-Covered Depth with the Freeze–Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    3. Huaylla, Claudia A. & Kuperman, Marcelo N. & Garibaldi, Lucas A., 2024. "Comparison of two statistical measures of complexity applied to ecological bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    4. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Zhijun Luo & Xiaofang Yang & Songkai Luo, 2024. "Land Use Simulation and Ecological Network Construction around Poyang Lake Area in China under the Goal of Sustainable Development," Sustainability, MDPI, vol. 16(18), pages 1-24, September.
    6. Okuyama, Toshinori, 2021. "Dilution effects enhance variation in parasitism risk among hosts and stabilize host–parasitoid population dynamics," Ecological Modelling, Elsevier, vol. 441(C).
    7. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2013. "Increasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food webs," Ecological Modelling, Elsevier, vol. 251(C), pages 1-8.
    9. Zhang, Yan & Wu, Tong & Song, Changsu & Hein, Lars & Shi, Faqi & Han, Mingchen & Ouyang, Zhiyun, 2022. "Influences of climate change and land use change on the interactions of ecosystem services in China’s Xijiang River Basin," Ecosystem Services, Elsevier, vol. 58(C).
    10. Saucan, Emil & Sreejith, R.P. & Vivek-Ananth, R.P. & Jost, Jürgen & Samal, Areejit, 2019. "Discrete Ricci curvatures for directed networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 347-360.
    11. Wang, Jin-Liang & Wu, Huai-Ning, 2011. "Stability analysis of impulsive parabolic complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 1020-1034.
    12. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    13. Shengnan Chen & Huiyan He & Rongrong Zong & Kaiwen Liu & Yutian Miao & Miaomiao Yan & Lei Xu, 2020. "Geographical Patterns of Algal Communities Associated with Different Urban Lakes in China," IJERPH, MDPI, vol. 17(3), pages 1-19, February.
    14. Yuxiang Zhao & Zishu Liu & Baofeng Zhang & Jingjie Cai & Xiangwu Yao & Meng Zhang & Ye Deng & Baolan Hu, 2023. "Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    16. Robin Lamarche-Perrin & Sven Banisch & Eckehard Olbrich, 2016. "The Information Bottleneck Method For Optimal Prediction Of Multilevel Agent-Based Systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 19(01n02), pages 1-45, February.
    17. Marco Alberto Javarone & Daniele Marinazzo, 2018. "Dilution of Ferromagnets via a Random Graph-Based Strategy," Complexity, Hindawi, vol. 2018, pages 1-11, April.
    18. Canelas, Joana Viana & Pereira, Henrique Miguel, 2022. "Impacts of land-use intensity on ecosystems stability," Ecological Modelling, Elsevier, vol. 472(C).
    19. Gilboa-Freedman, Gail & Hassin, Refael, 2016. "When Markov chains meet: A continuous-time model of network evolution," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 131-138.
    20. Zimo Yang & Tao Zhou & Pak Ming Hui & Jian-Hong Ke, 2012. "Instability in Evolutionary Games," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:444:y:2021:i:c:s0304380021000466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.