IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11309-d910670.html
   My bibliography  Save this article

The Effects of Water Depth on the Growth of Two Emergent Plants in an In-Situ Experiment

Author

Listed:
  • Xiaowen Lin

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

  • Xiaodong Wu

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

  • Zhenni Gao

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

  • Xuguang Ge

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

  • Jiale Xiong

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

  • Lingxiao Tan

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

  • Hongxu Wei

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

Abstract

With the degradation of the global lake ecosystem, aquatic plants are more and more widely used in lake ecological restoration. The effects of water depths on the growth and photosynthetic fluorescence characteristics of two emergent plants ( Typha orientalis and Zizania caduciflora ) were studied in eutrophic Lake Gehu by in-situ experiments. The results showed that water depth had no significant effect on germination of emergent plants. The water depth changed the morphological characteristics of emergent plants. Plant height, tiller number, leaf length, leaf width, the number of leaf, and the root-shoot ratio decreased with increasing water depth, whereas the number of dead leaves increased with increasing water depth. The biomass of emergent plants was highest when water depth was 40 cm. Water depth had a significant effect on the photosynthetic fluorescence of the emergent plant. Fv/Fm tended to decrease first and then increase with increasing water depth. When the water depth was 20 cm, the ETRmax of emergent plants was significantly higher than that of plants at the other water depths. These results show the suitable water depth range for T. orientalis and Z. caduciflora is 20–60 cm. A deeper water depth for a long time is not conducive to the growth of emergent plants.

Suggested Citation

  • Xiaowen Lin & Xiaodong Wu & Zhenni Gao & Xuguang Ge & Jiale Xiong & Lingxiao Tan & Hongxu Wei, 2022. "The Effects of Water Depth on the Growth of Two Emergent Plants in an In-Situ Experiment," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11309-:d:910670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11309/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11309/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Xingyang & Zhou, Guangsheng & He, Qijing & Zhou, Huailin, 2020. "Stomatal limitations to photosynthesis and their critical Water conditions in different growth stages of maize under water stress," Agricultural Water Management, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Yaqian Zong & Chao Xu & Kai Zhou & Xinhui Duan & Bo Han & Chenggang He & Hua Jiang, . "Effects of exogenous ascorbic acid on photosynthesis and xanthophyll cycle in alfalfa (Medicago sativa L.) under drought and heat stress," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 0.
    3. Xingyang Song & Guangsheng Zhou & Qijin He, 2021. "Critical Leaf Water Content for Maize Photosynthesis under Drought Stress and Its Response to Rewatering," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    4. Sun, Xutong & Lv, Aimin & Chen, Dandan & Zhang, Zili & Wang, Xuming & Zhou, Aicun & Xu, Xiaowei & Shao, Qingsong & Zheng, Ying, 2023. "Exogenous spermidine enhanced the water deficit tolerance of Anoectochilus roxburghii by modulating plant antioxidant enzymes and polyamine metabolism," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Yaqian Zong & Chao Xu & Kai Zhou & Xinhui Duan & Bo Han & Chenggang He & Hua Jiang, 2023. "Effects of exogenous ascorbic acid on photosynthesis and xanthophyll cycle in alfalfa (Medicago sativa L.) under drought and heat stress," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(11), pages 487-499.
    6. Kamphorst, Samuel Henrique & Amaral Júnior, Antônio Teixeira do & Vergara-Diaz, Omar & Gracia-Romero, Adrian & Fernandez-Gallego, Jose A. & Chang-Espino, Melissa Carolina & Buchaillot, Maria Luisa & R, 2022. "Heterosis and reciprocal effects for physiological and morphological traits of popcorn plants under different water conditions," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Lei Wang & Baizhao Ren & Bin Zhao & Peng Liu & Jiwang Zhang, 2022. "Comparative Yield and Photosynthetic Characteristics of Two Corn ( Zea mays L.) Hybrids Differing in Maturity under Different Irrigation Treatments," Agriculture, MDPI, vol. 12(3), pages 1-16, March.
    8. Li, Yang & Yuan, Lin & Cao, Hao-Bing & Tang, Chen-Dong & Wang, Xian-Ye & Tian, Bo & Dou, Shen-Tang & Zhang, Li-Quan & Shen, Jian, 2021. "A dynamic biomass model of emergent aquatic vegetation under different water levels and salinity," Ecological Modelling, Elsevier, vol. 440(C).
    9. Tianpeng Gao & Haoming Wang & Changming Li & Mingbo Zuo & Xueying Wang & Yuan Liu & Yingli Yang & Danghui Xu & Yubing Liu & Xiangwen Fang, 2022. "Effects of Heavy Metal Stress on Physiology, Hydraulics, and Anatomy of Three Desert Plants in the Jinchang Mining Area, China," IJERPH, MDPI, vol. 19(23), pages 1-19, November.
    10. Yuan, Xin & Jiao, Liang & Che, Xichen & Wu, Jingjing & Zhu, Xuli & Li, Qian, 2024. "Study on the water-carbon coupling coordination function on the eastern edge of the Qinghai-Tibet plateau," Ecological Modelling, Elsevier, vol. 487(C).
    11. Shoukun Dong & Xinyu Zhou & Zhipeng Qu & Xiyue Wang, 2023. "Effects of drought stress at different stages on soluble sugar content of soybeans," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(11), pages 500-511.
    12. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Wang, Zhihui & Li, Hongping & Lv, Min & Wang, Yaosheng & Gong, Daozhi & Zhao, Lu, 2023. "Multi-objective deficit drip irrigation optimization of citrus yield, fruit quality and water use efficiency using NSGA-II in seasonal arid area of Southwest China," Agricultural Water Management, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11309-:d:910670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.