IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v431y2020ics0304380020302623.html
   My bibliography  Save this article

Dietary bioaccumulation of persistent organic pollutants in the common sole Solea solea in the context of global change. Part 2: Sensitivity of juvenile growth and contamination to toxicokinetic parameters uncertainty and environmental conditions variability in estuaries

Author

Listed:
  • Mounier, Florence
  • Loizeau, Véronique
  • Pecquerie, Laure
  • Drouineau, Hilaire
  • Labadie, Pierre
  • Budzinski, Hélène
  • Lobry, Jérémy

Abstract

The amount of potentially toxic chemicals in a fish depends on various environmental factors, such as temperature and feeding ecology, which can be affected by Global Changes (GC). The main objective of the present work was to study the relative influence of temperature, food quality and food availability on the growth and contamination of juveniles of common sole (Solea solea), a marine flatfish species known to be a relevant indicator of the nursery quality. It focuses on two Persistent Organic Pollutants (CB153 and L-PFOS) of legacy and emerging concern, respectively. To achieve this, we used a toxicokinetic (TK) model in which toxicant flows are mechanistically predicted using a bioenergetic model based on the Dynamic Energy Budget (DEB) theory. This modelling framework was applied to juvenile sole from the Gironde estuary (SW France) and allows accounting for the influence of environmental conditions on fish biological processes involved in toxicant fluxes. To compare their respective influence on model predictions of age, length, and contamination at puberty, we included in a global sensitivity analysis: (1) environmental variability gathered from literature for this particular estuary and (2) TK parameters (i.e. assimilation efficiency AE and elimination rate k˙e) variability and uncertainty gathered from literature about each contaminant but for different fish species and experimental conditions. Then, model predictions were confronted to fish contamination measurements from the Gironde Estuary with different combinations of TK parameter values from literature. Results highlighted a key role of diet composition on fish contamination and growth while water temperature only affected growth. It stressed the need to focus on GC impact on benthic communities and their consequences on juvenile fish diet for future work on GC scenarios. Furthermore, for both chemical, the range of variability of TK parameters from experiments led to underestimated fish contaminations. The best model fits were obtained using TK parameter values from model applications: from Mounier et al. (n.d.) for CB153 (Solea solea, experiment, AE=0.8 and k˙e=0 d−1) and from de Vos et al. (2008) for PFOS (food chain of the Western Scheldt estuary, The Netherlands, AE=0.8 and k˙e=0.8 10−2.d−1).

Suggested Citation

  • Mounier, Florence & Loizeau, Véronique & Pecquerie, Laure & Drouineau, Hilaire & Labadie, Pierre & Budzinski, Hélène & Lobry, Jérémy, 2020. "Dietary bioaccumulation of persistent organic pollutants in the common sole Solea solea in the context of global change. Part 2: Sensitivity of juvenile growth and contamination to toxicokinetic param," Ecological Modelling, Elsevier, vol. 431(C).
  • Handle: RePEc:eee:ecomod:v:431:y:2020:i:c:s0304380020302623
    DOI: 10.1016/j.ecolmodel.2020.109196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020302623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jager, Tjalling & Zimmer, Elke I., 2012. "Simplified Dynamic Energy Budget model for analysing ecotoxicity data," Ecological Modelling, Elsevier, vol. 225(C), pages 74-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shangge & Jian, Jinfeng & Poopal, Rama Krishnan & Chen, Xinyu & He, Yaqi & Xu, Hongbin & Yu, Huimin & Ren, Zongming, 2022. "Mathematical modeling in behavior responses: The tendency-prediction based on a persistence model on real-time data," Ecological Modelling, Elsevier, vol. 464(C).
    2. Mounier, Florence & Pecquerie, Laure & Lobry, Jérémy & Sardi, Adriana E. & Labadie, Pierre & Budzinski, Hélène & Loizeau, Véronique, 2020. "Dietary bioaccumulation of persistent organic pollutants in the common sole Solea solea in the context of global change. Part 1: Revisiting parameterisation and calibration of a DEB model to consider ," Ecological Modelling, Elsevier, vol. 433(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamonica, Dominique & Herbach, Ulysse & Orias, Frédéric & Clément, Bernard & Charles, Sandrine & Lopes, Christelle, 2016. "Mechanistic modelling of daphnid-algae dynamics within a laboratory microcosm," Ecological Modelling, Elsevier, vol. 320(C), pages 213-230.
    2. Jager, Tjalling, 2020. "Revisiting simplified DEBtox models for analysing ecotoxicity data," Ecological Modelling, Elsevier, vol. 416(C).
    3. Johnston, A.S.A. & Hodson, M.E. & Thorbek, P. & Alvarez, T. & Sibly, R.M., 2014. "An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides," Ecological Modelling, Elsevier, vol. 280(C), pages 5-17.
    4. Jager, Tjalling & Salaberria, Iurgi & Hansen, Bjørn Henrik, 2015. "Capturing the life history of the marine copepod Calanus sinicus into a generic bioenergetics framework," Ecological Modelling, Elsevier, vol. 299(C), pages 114-120.
    5. Matyja, Konrad, 2023. "Standard dynamic energy budget model parameter sensitivity," Ecological Modelling, Elsevier, vol. 478(C).
    6. Accolla, Chiara & Vaugeois, Maxime & Rueda-Cediel, Pamela & Moore, Adrian & Marques, Gonçalo M. & Marella, Purvaja & Forbes, Valery E., 2020. "DEB-tox and Data Gaps: Consequences for individual-level outputs," Ecological Modelling, Elsevier, vol. 431(C).
    7. Jager, Tjalling & Goussen, Benoit & Gergs, André, 2023. "Using the standard DEB animal model for toxicokinetic-toxicodynamic analysis," Ecological Modelling, Elsevier, vol. 475(C).
    8. Jager, Tjalling & Barsi, Alpar & Hamda, Natnael T. & Martin, Benjamin T. & Zimmer, Elke I. & Ducrot, Virginie, 2014. "Dynamic energy budgets in population ecotoxicology: Applications and outlook," Ecological Modelling, Elsevier, vol. 280(C), pages 140-147.
    9. Hamda, Natnael T. & Martin, Benjamin & Poletto, Jamilynn B. & Cocherell, Dennis E. & Fangue, Nann A. & Van Eenennaam, Joel & Mora, Ethan A. & Danner, Eric, 2019. "Applying a simplified energy-budget model to explore the effects of temperature and food availability on the life history of green sturgeon (Acipenser medirostris)," Ecological Modelling, Elsevier, vol. 395(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:431:y:2020:i:c:s0304380020302623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.