IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v431y2020ics0304380020302581.html
   My bibliography  Save this article

A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate

Author

Listed:
  • Coro, Gianpaolo

Abstract

COVID-19 pandemic is a global threat to human health and economy that requires urgent prevention and monitoring strategies. Several models are under study to control the disease spread and infection rate and to detect possible factors that might favour them, with a focus on understanding the correlation between the disease and specific geophysical parameters. However, the pandemic does not present evident environmental hindrances in the infected countries. Nevertheless, a lower rate of infections has been observed in some countries, which might be related to particular population and climatic conditions.

Suggested Citation

  • Coro, Gianpaolo, 2020. "A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate," Ecological Modelling, Elsevier, vol. 431(C).
  • Handle: RePEc:eee:ecomod:v:431:y:2020:i:c:s0304380020302581
    DOI: 10.1016/j.ecolmodel.2020.109187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020302581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Valiakos & Konstantinos Papaspyropoulos & Alexios Giannakopoulos & Periklis Birtsas & Sotirios Tsiodras & Michael R Hutchings & Vassiliki Spyrou & Danai Pervanidou & Labrini V Athanasiou & Niko, 2014. "Use of Wild Bird Surveillance, Human Case Data and GIS Spatial Analysis for Predicting Spatial Distributions of West Nile Virus in Greece," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-8, May.
    2. Clay, Karen & Lewis, Joshua & Severnini, Edson, 2018. "Pollution, Infectious Disease, and Mortality: Evidence from the 1918 Spanish Influenza Pandemic," The Journal of Economic History, Cambridge University Press, vol. 78(4), pages 1179-1209, December.
    3. Coro, Gianpaolo & Pagano, Pasquale & Ellenbroek, Anton, 2013. "Combining simulated expert knowledge with Neural Networks to produce Ecological Niche Models for Latimeria chalumnae," Ecological Modelling, Elsevier, vol. 268(C), pages 55-63.
    4. Coro, Gianpaolo & Magliozzi, Chiara & Vanden Berghe, Edward & Bailly, Nicolas & Ellenbroek, Anton & Pagano, Pasquale, 2016. "Estimating absence locations of marine species from data of scientific surveys in OBIS," Ecological Modelling, Elsevier, vol. 323(C), pages 61-76.
    5. Coro, Gianpaolo & Vilas, Luis Gonzalez & Magliozzi, Chiara & Ellenbroek, Anton & Scarponi, Paolo & Pagano, Pasquale, 2018. "Forecasting the ongoing invasion of Lagocephalus sceleratus in the Mediterranean Sea," Ecological Modelling, Elsevier, vol. 371(C), pages 37-49.
    6. Coro, Gianpaolo & Magliozzi, Chiara & Ellenbroek, Anton & Pagano, Pasquale, 2015. "Improving data quality to build a robust distribution model for Architeuthis dux," Ecological Modelling, Elsevier, vol. 305(C), pages 29-39.
    7. A. Godzinski & M. Suarez Castillo, 2019. "Short-term health effects of public transport disruptions: air pollution and viral spread channels," Documents de Travail de l'Insee - INSEE Working Papers g2019-03, Institut National de la Statistique et des Etudes Economiques.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Sompolska-Rzechuła & Agnieszka Kurdyś-Kujawska, 2021. "Towards Understanding Interactions between Sustainable Development Goals: The Role of Climate-Well-Being Linkages. Experiences of EU Countries," Energies, MDPI, vol. 14(7), pages 1-20, April.
    2. Pitchaimani, M. & Brasanna Devi, M., 2021. "Stochastic probical strategies in a delay virus infection model to combat COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Ping He & Yu Gao & Longfei Guo & Tongtong Huo & Yuxin Li & Xingren Zhang & Yunfeng Li & Cheng Peng & Fanyun Meng, 2021. "Evaluating the Disaster Risk of the COVID-19 Pandemic Using an Ecological Niche Model," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    4. Ploutarchos Tzampoglou & Dimitrios Loukidis, 2020. "Investigation of the Importance of Climatic Factors in COVID-19 Worldwide Intensity," IJERPH, MDPI, vol. 17(21), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coro, Gianpaolo & Vilas, Luis Gonzalez & Magliozzi, Chiara & Ellenbroek, Anton & Scarponi, Paolo & Pagano, Pasquale, 2018. "Forecasting the ongoing invasion of Lagocephalus sceleratus in the Mediterranean Sea," Ecological Modelling, Elsevier, vol. 371(C), pages 37-49.
    2. Coro, Gianpaolo & Magliozzi, Chiara & Vanden Berghe, Edward & Bailly, Nicolas & Ellenbroek, Anton & Pagano, Pasquale, 2016. "Estimating absence locations of marine species from data of scientific surveys in OBIS," Ecological Modelling, Elsevier, vol. 323(C), pages 61-76.
    3. Arthi, Vellore & Parman, John, 2021. "Disease, downturns, and wellbeing: Economic history and the long-run impacts of COVID-19," Explorations in Economic History, Elsevier, vol. 79(C).
    4. Karen Clay & Joshua A. Lewis & Edson R. Severnini & Xiao Wang, 2020. "The Value of Health Insurance during a Crisis: Effects of Medicaid Implementation on Pandemic Influenza Mortality," NBER Working Papers 27120, National Bureau of Economic Research, Inc.
    5. Yun Qiu & Xi Chen & Wei Shi, 2020. "Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1127-1172, October.
    6. Sandro Provenzano & Sefi Roth & Lutz Sager, 2024. "Air Pollution and Respiratory Infectious Diseases," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(5), pages 1127-1139, May.
    7. Amanda Guimbeau & Nidhiya Menon & Aldo Musacchio, 2022. "Short‐ and medium‐run health and literacy impacts of the 1918 Spanish Flu pandemic in Brazil," Economic History Review, Economic History Society, vol. 75(4), pages 997-1025, November.
    8. Correia, Sergio & Luck, Stephan & Verner, Emil, 2022. "Pandemics Depress the Economy, Public Health Interventions Do Not: Evidence from the 1918 Flu," The Journal of Economic History, Cambridge University Press, vol. 82(4), pages 917-957, December.
    9. Zhiqiang Chen & Zhibiao Chen, 2018. "Effects of ecological restoration measures on the distribution of Dicranopteris dichotoma at the microscale in the red soil hilly region of China," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-17, October.
    10. Guidetti, Bruna & Pereda, Paula & Severnini, Edson R., 2020. "Health Shocks under Hospital Capacity Constraint: Evidence from Air Pollution in Sao Paulo, Brazil," IZA Discussion Papers 13211, Institute of Labor Economics (IZA).
    11. Julia Mink, 2024. "Putting a Price Tag on Air Pollution: The Social Healthcare Costs of Air Pollution in France," ECONtribute Discussion Papers Series 320, University of Bonn and University of Cologne, Germany.
    12. Guillaume Chapelle, 2022. "The medium-term impact of non-pharmaceutical interventions. The case of the 1918 influenza in US cities," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 37(109), pages 43-81.
    13. Philipp Ager & Katherine Eriksson & Ezra Karger & Peter Nencka & Melissa A. Thomasson, 2024. "School Closures during the 1918 Flu Pandemic," The Review of Economics and Statistics, MIT Press, vol. 106(1), pages 266-276, January.
    14. Clay, Karen & Lewis, Joshua & Severnini, Edson, 2019. "What explains cross-city variation in mortality during the 1918 influenza pandemic? Evidence from 438 U.S. cities," Economics & Human Biology, Elsevier, vol. 35(C), pages 42-50.
    15. Rui Esteves & Kris James Mitchener & Peter Nencka & Melissa A. Thomasson, 2022. "Do Pandemics Change Healthcare? Evidence from the Great Influenza," NBER Working Papers 30643, National Bureau of Economic Research, Inc.
    16. Sergi Basco & Jordi Domènech & Joan R. Rosés, 2022. "Unequal Mortality During the Spanish Flu," Palgrave Studies in Economic History, in: Pandemics, Economics and Inequality, chapter 0, pages 33-50, Palgrave Macmillan.
    17. Viktor Stojkoski & Zoran Utkovski & Petar Jolakoski & Dragan Tevdovski & Ljupco Kocarev, 2020. "Correlates of the country differences in the infection and mortality rates during the first wave of the COVID-19 pandemic: Evidence from Bayesian model averaging," Papers 2004.07947, arXiv.org, revised Jan 2022.
    18. Velde, François R., 2022. "What Happened to the U.S. Economy during the 1918 Influenza Pandemic? A View Through High-Frequency Data," The Journal of Economic History, Cambridge University Press, vol. 82(1), pages 284-326, March.
    19. Doran, Áine & Colvin, Christopher L. & McLaughlin, Eoin, 2024. "What can we learn from historical pandemics? A systematic review of the literature," Social Science & Medicine, Elsevier, vol. 342(C).
    20. Guillaume Chapelle, 2020. "The medium-term impact of non-pharmaceutical interventions. The case of the 1918 influenza in US cities," Working Papers hal-03389177, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:431:y:2020:i:c:s0304380020302581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.