IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v431y2020ics0304380020302301.html
   My bibliography  Save this article

Lianas in silico, ecological insights from a model of structural parasitism

Author

Listed:
  • di Porcia e Brugnera, Manfredo
  • Fischer, Rico
  • Taubert, Franziska
  • Huth, Andreas
  • Verbeeck, Hans

Abstract

Tropical forests are a critical component of the Earth system, storing half of the global forest carbon stocks and accounting for a third of terrestrial photosynthesis. Lianas are structural parasites that can substantially reduce the carbon sequestration capacity of these forests. Simulations of this peculiar growth form have only recently started and a single vegetation model included lianas so far. In this work we present a new liana implementation within the individual based model Formind. Initial tests indicate high structural realism both horizontal and vertical. In particular, we benchmarked the model against empirical observations of size distribution, mean liana cluster size and vertical leaf distribution for the Paracou site in French Guiana. Our model predicted a reduction of above-ground biomass between 10% for mature stands to 45% for secondary plots upon inclusion of lianas in the simulations. The reduced biomass was the result of a lower productivity due to a combination of lower tree photosynthesis and high liana respiration. We evaluated structural metrics (LAI, basal area, mean tree-height) and carbon fluxes (GPP, respiration) by comparing simulations with and without lianas. At the equilibrium, liana productivity was 1.9tC ha−1 y−1, or 23% of the total GPP and the forest carbon stocks were between 5% and 11% lower in simulations with lianas. We also highlight the main strengths and limitations of this new approach and propose new field measurements to further the understanding of liana ecology in a modelling framework.

Suggested Citation

  • di Porcia e Brugnera, Manfredo & Fischer, Rico & Taubert, Franziska & Huth, Andreas & Verbeeck, Hans, 2020. "Lianas in silico, ecological insights from a model of structural parasitism," Ecological Modelling, Elsevier, vol. 431(C).
  • Handle: RePEc:eee:ecomod:v:431:y:2020:i:c:s0304380020302301
    DOI: 10.1016/j.ecolmodel.2020.109159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020302301
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fischer, Rico & Bohn, Friedrich & Dantas de Paula, Mateus & Dislich, Claudia & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Kazmierczak, Martin & Knapp, Nikolai & Lehmann, Sebastian & Paulick, Sebastia, 2016. "Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests," Ecological Modelling, Elsevier, vol. 326(C), pages 124-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John C. Stevenson, 2021. "Population and Inequality Dynamics in Simple Economies," Papers 2101.09817, arXiv.org, revised Aug 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vacchiano, Giorgio & Ascoli, Davide & Berzaghi, Fabio & Lucas-Borja, Manuel Esteban & Caignard, Thomas & Collalti, Alessio & Mairota, Paola & Palaghianu, Ciprian & Reyer, Christopher P.O. & Sanders, T, 2018. "Reproducing reproduction: How to simulate mast seeding in forest models," Ecological Modelling, Elsevier, vol. 376(C), pages 40-53.
    2. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    3. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    4. Ribeiro, N.S. & Armstrong, Amanda Hildt & Fischer, Rico & Kim, Yeon-Su & Shugart, Herman Henry & Ribeiro-Barros, Ana I. & Chauque, Aniceto & Tear, T. & Washington-Allen, Robert & Bandeira, Romana R., 2021. "Prediction of forest parameters and carbon accounting under different fire regimes in Miombo woodlands, Niassa Special Reserve, Northern Mozambique," Forest Policy and Economics, Elsevier, vol. 133(C).
    5. Rau, E-Ping & Fischer, Fabian & Joetzjer, Émilie & Maréchaux, Isabelle & Sun, I Fang & Chave, Jérôme, 2022. "Transferability of an individual- and trait-based forest dynamics model: A test case across the tropics," Ecological Modelling, Elsevier, vol. 463(C).
    6. Maciel, Everton A. & Martins, Valeria F. & de Paula, Mateus D. & Huth, Andreas & Guilherme, Frederico A.G. & Fischer, Rico & Giles, André & Barbosa, Reinaldo I. & Cavassan, Osmar & Martins, Fernando R, 2021. "Defaunation and changes in climate and fire frequency have synergistic effects on aboveground biomass loss in the brazilian savanna," Ecological Modelling, Elsevier, vol. 454(C).
    7. Armstrong, A.H. & Huth, A. & Osmanoglu, B. & Sun, G. & Ranson, K.J. & Fischer, R., 2020. "A multi-scaled analysis of forest structure using individual-based modeling in a costa rican rainforest," Ecological Modelling, Elsevier, vol. 433(C).
    8. Wu, Mia M. & Liang, Yu & Taubert, Franziska & Huth, Andreas & Zhang, Min & Wang, Xugao, 2023. "Sensitivity of forest composition and productivity to climate change in mixed broadleaved-Korean pine forest of Northeastern China," Ecological Modelling, Elsevier, vol. 483(C).
    9. Wirth, Stephen Björn & Taubert, Franziska & Tietjen, Britta & Müller, Christoph & Rolinski, Susanne, 2021. "Do details matter? Disentangling the processes related to plant species interactions in two grassland models of different complexity," Ecological Modelling, Elsevier, vol. 460(C).
    10. Piponiot, Camille & Derroire, Géraldine & Descroix, Laurent & Mazzei, Lucas & Rutishauser, Ervan & Sist, Plinio & Hérault, Bruno, 2018. "Assessing timber volume recovery after disturbance in tropical forests – A new modelling framework," Ecological Modelling, Elsevier, vol. 384(C), pages 353-369.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:431:y:2020:i:c:s0304380020302301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.