IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i4p947-954.html
   My bibliography  Save this article

Movement distances enhance validity of predictive models

Author

Listed:
  • Ko, Chia-Ying
  • Root, Terry L.
  • Lee, Pei-Fen

Abstract

Including the distance species are able to move in predictive models improves conservation practice. Bird inventory projects carried out from 1993 to 2004 in Taiwan provide an opportunity to investigate the relationships among species distribution, movement distance, and the environment. We compared projected distributions of 17 Taiwanese endemic bird species using what we called the Standard Method (i.e. movement distance is zero) and what we called the Buffer Method (i.e. movement distance is longer than zero) in three presence-only models (GARP, MAXENT and LIVES). The Standard Method used species original occurrence records directly while the Buffer Method expanded the occurrence of species to areas 1km2 around each recorded location. We first tested the efficacy of the Buffer Method using ten common species of the 17, and then applied the method to two rare species of the 17. For both the common and rare species, the distributions predicted by the two methods showed slight but important differences. The Buffer Method for all species had a higher average predictive probability, while the Standard Method had a higher maximum predictive probability. Most of the values for the area under the curve (AUC) were over 0.8 with the exceptions of Taiwan Barbet (Megalaima nuchalis) and Taiwan Hwamei (Garrulax taewanus), which have recently separated from Indochinese Barbet (Megalaima annamensis) and Chinese Hwamei (Garrulax canorus), and since 2008 and 2006 have been regarded as species endemic to the study area. Kappa values showed good performance for all species using both methods. The Buffer Method, however, resulted in significantly higher sensitivity and accuracy values for all models of species (p<0.05). We conclude that when modeling species distribution including the area where the species was censused along with areas within the minimum movement areas better defines the surrounding areas that might supplement core habitat requirements. Therefore, using the Buffer Method, species surrounding distribution can be obtained which provides a better understanding of the species distributions. Given that distribution size is a key to the conservation of species, we suggest the Buffer Method can be used in conservation planning.

Suggested Citation

  • Ko, Chia-Ying & Root, Terry L. & Lee, Pei-Fen, 2011. "Movement distances enhance validity of predictive models," Ecological Modelling, Elsevier, vol. 222(4), pages 947-954.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:4:p:947-954
    DOI: 10.1016/j.ecolmodel.2010.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010006502
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(5), pages 777-788, October.
    2. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(1), pages 151-160, February.
    3. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    4. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(4), pages 629-637, August.
    5. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    6. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    7. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 427-432, June.
    8. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Balestrieri & Giuseppe Bogliani & Giovanni Boano & Aritz Ruiz-González & Nicola Saino & Stefano Costa & Pietro Milanesi, 2016. "Modelling the Distribution of Forest-Dependent Species in Human-Dominated Landscapes: Patterns for the Pine Marten in Intensively Cultivated Lowlands," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuncheng Zhao & Mingyue Zhao & Lei Zhang & Chunyi Wang & Yinlong Xu, 2021. "Predicting Possible Distribution of Tea ( Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China," Agriculture, MDPI, vol. 11(11), pages 1-18, November.
    2. Weiyu Yu & Nicola A Wardrop & Robert E S Bain & Victor Alegana & Laura J Graham & Jim A Wright, 2019. "Mapping access to domestic water supplies from incomplete data in developing countries: An illustrative assessment for Kenya," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-19, May.
    3. Keliang Zhang & Yin Zhang & Diwen Jia & Jun Tao, 2020. "Species Distribution Modeling of Sassafras Tzumu and Implications for Forest Management," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    4. Chefaoui, Rosa M. & Lobo, Jorge M., 2008. "Assessing the effects of pseudo-absences on predictive distribution model performance," Ecological Modelling, Elsevier, vol. 210(4), pages 478-486.
    5. Jim Graham & Greg Newman & Sunil Kumar & Catherine Jarnevich & Nick Young & Alycia Crall & Thomas J. Stohlgren & Paul Evangelista, 2010. "Bringing Modeling to the Masses: A Web Based System to Predict Potential Species Distributions," Future Internet, MDPI, vol. 2(4), pages 1-11, November.
    6. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.
    7. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    8. Okitonyumbe Y.F., Joseph & Ulungu, Berthold E.-L., 2013. "Nouvelle caractérisation des solutions efficaces des problèmes d’optimisation combinatoire multi-objectif [New characterization of efficient solution in multi-objective combinatorial optimization]," MPRA Paper 66123, University Library of Munich, Germany.
    9. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    10. Monica Motta & Caterina Sartori, 2020. "Normality and Nondegeneracy of the Maximum Principle in Optimal Impulsive Control Under State Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 44-71, April.
    11. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    12. Chenchen Wu & Dachuan Xu & Donglei Du & Wenqing Xu, 2016. "An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding," Journal of Combinatorial Optimization, Springer, vol. 32(4), pages 1017-1035, November.
    13. Gengping Zhu & Matthew J Petersen & Wenjun Bu, 2012. "Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    14. Uzma Ashraf & Hassan Ali & Muhammad Nawaz Chaudry & Irfan Ashraf & Adila Batool & Zafeer Saqib, 2016. "Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model," Sustainability, MDPI, vol. 8(8), pages 1-11, July.
    15. Ernst Althaus & Felix Rauterberg & Sarah Ziegler, 2020. "Computing Euclidean Steiner trees over segments," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 309-325, October.
    16. World Bank, 2003. "Argentina : Reforming Policies and Institutions for Efficiency and Equity of Public Expenditures," World Bank Publications - Reports 14637, The World Bank Group.
    17. Ceretani, Andrea N. & Salva, Natalia N. & Tarzia, Domingo A., 2018. "Approximation of the modified error function," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 607-617.
    18. Parihar, Amit Kumar Singh & Hammer, Thomas & Sridhar, G., 2015. "Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas," Renewable Energy, Elsevier, vol. 74(C), pages 875-883.
    19. Liang, Wanwan & Papeş, Monica & Tran, Liem & Grant, Jerome & Washington-Allen, Robert & Stewart, Scott & Wiggins, Gregory, 2018. "The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift," Ecological Modelling, Elsevier, vol. 388(C), pages 1-9.
    20. Brown, Jeffrey R., 2001. "Private pensions, mortality risk, and the decision to annuitize," Journal of Public Economics, Elsevier, vol. 82(1), pages 29-62, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:4:p:947-954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.