IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v380y2018icp31-39.html
   My bibliography  Save this article

Frugivory and seed dispersal: Extended bi-stable persistence and reduced clustering of plants

Author

Listed:
  • Mohammed, M.M.A.
  • Landi, P.
  • Minoarivelo, H.O.
  • Hui, C.

Abstract

Frugivores and fleshy-fruited plants commonly engage in the mutually beneficial interaction by dispersing seeds while consuming fruit pulps. Such mutualistic interactions can have profound impacts on the persistence and distributions of plant populations. Based on pair approximation, we here develop a process-based mechanistic model that captures the dynamics of the mean and local densities of plants and the density of animals. The model considers three components of frugivory: the strength of frugivore-plant mutualistic interaction, the efficiency of seed dispersers, and the germination probability of seeds. Results show that seed dispersal by animals is crucial to the extended persistence of plants by reducing the level of aggregation and thus local intraspecific competition. Importantly, frugivory can only be beneficial to the plants if the animal is an efficient seed disperser with limited risks/costs of dispersal plus adequate number of encounters. Otherwise, frugivory could become a main driver of plant extinction from seed predation by the animals. In conclusion, frugivorous seed dispersal could allow persistence of plants in habitats that otherwise require much higher levels of fecundity and dispersal rate to survive. Such extended persistence highlights the threshold phenomenon in plant conservation – extended persistence in environments that are difficult to restore once the plants have collapsed.

Suggested Citation

  • Mohammed, M.M.A. & Landi, P. & Minoarivelo, H.O. & Hui, C., 2018. "Frugivory and seed dispersal: Extended bi-stable persistence and reduced clustering of plants," Ecological Modelling, Elsevier, vol. 380(C), pages 31-39.
  • Handle: RePEc:eee:ecomod:v:380:y:2018:i:c:p:31-39
    DOI: 10.1016/j.ecolmodel.2018.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018301273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John M. Drake & Blaine D. Griffen, 2010. "Early warning signals of extinction in deteriorating environments," Nature, Nature, vol. 467(7314), pages 456-459, September.
    2. Sonia Kéfi & Vishwesha Guttal & William A Brock & Stephen R Carpenter & Aaron M Ellison & Valerie N Livina & David A Seekell & Marten Scheffer & Egbert H van Nes & Vasilis Dakos, 2014. "Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    3. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orozco-Fuentes, S. & Griffiths, G. & Holmes, M.J. & Ettelaie, R. & Smith, J. & Baggaley, A.W. & Parker, N.G., 2019. "Early warning signals in plant disease outbreaks," Ecological Modelling, Elsevier, vol. 393(C), pages 12-19.
    2. Tobias S Brett & Eamon B O’Dea & Éric Marty & Paige B Miller & Andrew W Park & John M Drake & Pejman Rohani, 2018. "Anticipating epidemic transitions with imperfect data," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-18, June.
    3. Ryan D Batt & Tarsha Eason & Ahjond Garmestani, 2019. "Time scale of resilience loss: Implications for managing critical transitions in water quality," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-19, October.
    4. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    5. Martin Lindegren & Vasilis Dakos & Joachim P Gröger & Anna Gårdmark & Georgs Kornilovs & Saskia A Otto & Christian Möllmann, 2012. "Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    6. Vasilis Dakos & Stephen R Carpenter & William A Brock & Aaron M Ellison & Vishwesha Guttal & Anthony R Ives & Sonia Kéfi & Valerie Livina & David A Seekell & Egbert H van Nes & Marten Scheffer, 2012. "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-20, July.
    7. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    8. Maarten C Boerlijst & Thomas Oudman & André M de Roos, 2013. "Catastrophic Collapse Can Occur without Early Warning: Examples of Silent Catastrophes in Structured Ecological Models," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-6, April.
    9. Manfred Füllsack & Daniel Reisinger & Marie Kapeller & Georg Jäger, 2022. "Early warning signals from the periphery," Journal of Computational Social Science, Springer, vol. 5(1), pages 665-685, May.
    10. William A Brock & Stephen R Carpenter, 2012. "Early Warnings of Regime Shift When the Ecosystem Structure Is Unknown," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.
    11. Tatiana Baumuratova & Simona Dobre & Thierry Bastogne & Thomas Sauter, 2013. "Switch of Sensitivity Dynamics Revealed with DyGloSA Toolbox for Dynamical Global Sensitivity Analysis as an Early Warning for System's Critical Transition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    12. William A. Brock & Steven N. Durlauf, 2015. "On Sturdy Policy Evaluation," The Journal of Legal Studies, University of Chicago Press, vol. 44(S2), pages 447-473.
    13. Kiran D’Souza & Bogdan I Epureanu & Mercedes Pascual, 2015. "Forecasting Bifurcations from Large Perturbation Recoveries in Feedback Ecosystems," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-19, September.
    14. Yang, Anji & Wang, Hao & Yuan, Sanling, 2023. "Tipping time in a stochastic Leslie predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    15. Bian, Junhao & Ma, Zhiqin & Wang, Chunping & Huang, Tao & Zeng, Chunhua, 2024. "Early warning for spatial ecological system: Fractal dimension and deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    16. Acosta-Arreola, Jaime & Domínguez-Hüttinger, Elisa & Aguirre, Pablo & González, Nicolás & Meave, Jorge A., 2023. "Predicting dynamic trajectories of a protected plant community under contrasting conservation regimes: Insights from data-based modelling," Ecological Modelling, Elsevier, vol. 484(C).
    17. Tobias Brett & Marco Ajelli & Quan-Hui Liu & Mary G Krauland & John J Grefenstette & Willem G van Panhuis & Alessandro Vespignani & John M Drake & Pejman Rohani, 2020. "Detecting critical slowing down in high-dimensional epidemiological systems," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-19, March.
    18. Bhowmick, Amiya Ranjan & Saha, Bapi & Chattopadhyay, Joydev & Ray, Santanu & Bhattacharya, Sabyasachi, 2015. "Cooperation in species: Interplay of population regulation and extinction through global population dynamics database," Ecological Modelling, Elsevier, vol. 312(C), pages 150-165.
    19. Vishwesha Guttal & Srinivas Raghavendra & Nikunj Goel & Quentin Hoarau, 2016. "Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    20. Karimi Rahjerdi, Bahareh & Ramamoorthy, Ramesh & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Jafari, Sajad, 2022. "Indicating the synchronization bifurcation points using the early warning signals in two case studies: Continuous and explosive synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:380:y:2018:i:c:p:31-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.