IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35820-w.html
   My bibliography  Save this article

Reconciling discrepant minor sulfur isotope records of the Great Oxidation Event

Author

Listed:
  • Benjamin T. Uveges

    (Massachusetts Institute of Technology)

  • Gareth Izon

    (Massachusetts Institute of Technology)

  • Shuhei Ono

    (Massachusetts Institute of Technology)

  • Nicolas J. Beukes

    (Department of Geology, University of Johannesburg)

  • Roger E. Summons

    (Massachusetts Institute of Technology)

Abstract

Understanding the timing and trajectory of atmospheric oxygenation remains fundamental to deciphering its causes and consequences. Given its origin in oxygen-free photochemistry, mass-independent sulfur isotope fractionation (S-MIF) is widely accepted as a geochemical fingerprint of an anoxic atmosphere. Nevertheless, S-MIF recycling through oxidative sulfide weathering—commonly termed the crustal memory effect (CME)—potentially decouples the multiple sulfur isotope (MSI) record from coeval atmospheric chemistry. Herein, however, after accounting for unrecognised temporal and spatial biases within the Archaean–early-Palaeoproterozoic MSI record, we demonstrate that the global expression of the CME is barely resolvable; thereby validating S-MIF as a tracer of contemporaneous atmospheric chemistry during Earth’s incipient oxygenation. Next, utilising statistical approaches, supported by new MSI data, we show that the reconciliation of adjacent, yet seemingly discrepant, South African MSI records requires that the rare instances of post-2.3-billion-year-old S-MIF are stratigraphically restricted. Accepting others’ primary photochemical interpretation, our approach demands that these implied atmospheric dynamics were ephemeral, operating on sub-hundred-thousand-year timescales. Importantly, these apparent atmospheric relapses were fundamentally different from older putative oxygenation episodes, implicating an intermediate, and potentially uniquely feedback-sensitive, Earth system state in the wake of the Great Oxidation Event.

Suggested Citation

  • Benjamin T. Uveges & Gareth Izon & Shuhei Ono & Nicolas J. Beukes & Roger E. Summons, 2023. "Reconciling discrepant minor sulfur isotope records of the Great Oxidation Event," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35820-w
    DOI: 10.1038/s41467-023-35820-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35820-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35820-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David A. Gold & Abigail Caron & Gregory P. Fournier & Roger E. Summons, 2017. "Paleoproterozoic sterol biosynthesis and the rise of oxygen," Nature, Nature, vol. 543(7645), pages 420-423, March.
    2. B. A. Killingsworth & P. Sansjofre & P. Philippot & P. Cartigny & C. Thomazo & S. V. Lalonde, 2019. "Constraining the rise of oxygen with oxygen isotopes," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Christopher T. Reinhard & Noah J. Planavsky & Timothy W. Lyons, 2013. "Long-term sedimentary recycling of rare sulphur isotope anomalies," Nature, Nature, vol. 497(7447), pages 100-103, May.
    4. Christopher T. Reinhard & Noah J. Planavsky & Benjamin C. Gill & Kazumi Ozaki & Leslie J. Robbins & Timothy W. Lyons & Woodward W. Fischer & Chunjiang Wang & Devon B. Cole & Kurt O. Konhauser, 2017. "Evolution of the global phosphorus cycle," Nature, Nature, vol. 541(7637), pages 386-389, January.
    5. Colin Goldblatt & Timothy M. Lenton & Andrew J. Watson, 2006. "Bistability of atmospheric oxygen and the Great Oxidation," Nature, Nature, vol. 443(7112), pages 683-686, October.
    6. A. Bekker & H. D. Holland & P.-L. Wang & D. Rumble & H. J. Stein & J. L. Hannah & L. L. Coetzee & N. J. Beukes, 2004. "Dating the rise of atmospheric oxygen," Nature, Nature, vol. 427(6970), pages 117-120, January.
    7. Chang Liu & Jingyao Zhang, 2022. "Methane might be made by all living organisms," Nature, Nature, vol. 603(7901), pages 396-397, March.
    8. Pascal Philippot & Janaína N. Ávila & Bryan A. Killingsworth & Svetlana Tessalina & Franck Baton & Tom Caquineau & Elodie Muller & Ernesto Pecoits & Pierre Cartigny & Stefan V. Lalonde & Trevor R. Ire, 2018. "Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Andrew M. Leong & Tucker Ely & Everett L. Shock, 2021. "Decreasing extents of Archean serpentinization contributed to the rise of an oxidized atmosphere," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Haitao Shang & Daniel H. Rothman & Gregory P. Fournier, 2022. "Oxidative metabolisms catalyzed Earth’s oxygenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Wang Zheng & Anwen Zhou & Swapan K. Sahoo & Morrison R. Nolan & Chadlin M. Ostrander & Ruoyu Sun & Ariel D. Anbar & Shuhai Xiao & Jiubin Chen, 2023. "Recurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Guoxiong Chen & Qiuming Cheng & Timothy W. Lyons & Jun Shen & Frits Agterberg & Ning Huang & Molei Zhao, 2022. "Reconstructing Earth’s atmospheric oxygenation history using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Matthew P. Brady & Rosalie Tostevin & Nicholas J. Tosca, 2022. "Marine phosphate availability and the chemical origins of life on Earth," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Liang, Zhongyao & Wu, Sifeng & Chen, Huili & Yu, Yanhong & Liu, Yong, 2018. "A probabilistic method to enhance understanding of nutrient limitation dynamics of phytoplankton," Ecological Modelling, Elsevier, vol. 368(C), pages 404-410.
    7. Joanne S. Boden & Juntao Zhong & Rika E. Anderson & Eva E. Stüeken, 2024. "Timing the evolution of phosphorus-cycling enzymes through geological time using phylogenomics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Alysha K. Lee & Jeremy H. Wei & Paula V. Welander, 2023. "De novo cholesterol biosynthesis in bacteria," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Yafang Song & Fred T. Bowyer & Benjamin J. W. Mills & Andrew S. Merdith & Paul B. Wignall & Jeff Peakall & Shuichang Zhang & Xiaomei Wang & Huajian Wang & Donald E. Canfield & Graham A. Shields & Simo, 2023. "Dynamic redox and nutrient cycling response to climate forcing in the Mesoproterozoic ocean," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Yongchuan Chen & Qiao Chen & Degang Zhang & Li Tang, 2022. "Variation in Sediment Available-Phosphorus in Dianchi Lake and Its Impacts on Algal Growth," IJERPH, MDPI, vol. 19(22), pages 1-14, November.
    11. Ernest Chi Fru & Jalila Al Bahri & Christophe Brosson & Olabode Bankole & Jérémie Aubineau & Abderrazzak El Albani & Alexandra Nederbragt & Anthony Oldroyd & Alasdair Skelton & Linda Lowhagen & David , 2023. "Transient fertilization of a post-Sturtian Snowball ocean margin with dissolved phosphate by clay minerals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Bo Huang & Man Liu & Timothy M. Kusky & Tim E. Johnson & Simon A. Wilde & Dong Fu & Hao Deng & Qunye Qian, 2023. "Changes in orogenic style and surface environment recorded in Paleoproterozoic foreland successions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Kumar, Satish & Cuntz, Manfred & Musielak, Zdzislaw E., 2015. "Fractal and multifractal analysis of the rise of oxygen in Earth’s early atmosphere," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 296-303.
    14. Lennart Ramme & Tatiana Ilyina & Jochem Marotzke, 2024. "Moderate greenhouse climate and rapid carbonate formation after Marinoan snowball Earth," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35820-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.