IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v137y2016i3d10.1007_s10584-016-1696-z.html
   My bibliography  Save this article

Modeling postglacial vegetation dynamics of temperate forests on the Olympic Peninsula (WA, USA) with special regard to snowpack

Author

Listed:
  • Christoph Schwörer

    (1251 University of Oregon)

  • David M. Fisher

    (1251 University of Oregon
    Stanford University
    University of Washington)

  • Daniel G. Gavin

    (1251 University of Oregon)

  • Christian Temperli

    (Swiss Federal Research Institute WSL)

  • Patrick J. Bartlein

    (1251 University of Oregon)

Abstract

Past and future forest composition and distribution in temperate mountain ranges is strongly influenced by temperature and snowpack. We used LANDCLIM, a spatially explicit, dynamic vegetation model, to simulate forest dynamics for the last 16,000 years and compared the simulation results to pollen and macrofossil records at five sites on the Olympic Peninsula (Washington, USA). To address the hydrological effects of climate-driven variations in snowpack on simulated forest dynamics, we added a simple snow accumulation-and-melt module to the vegetation model and compared simulations with and without the module. LANDCLIM produced realistic present-day species composition with respect to elevation and precipitation gradients. Over the last 16,000 years, simulations driven by transient climate data from an atmosphere-ocean general circulation model (AOGCM) and by a chironomid-based temperature reconstruction captured Late-glacial to Late Holocene transitions in forest communities. Overall, the reconstruction-driven vegetation simulations matched observed vegetation changes better than the AOGCM-driven simulations. This study also indicates that forest composition is very sensitive to snowpack-mediated changes in soil moisture. Simulations without the snow module showed a strong effect of snowpack on key bioclimatic variables and species composition at higher elevations. A projected upward shift of the snow line and a decrease in snowpack might lead to drastic changes in mountain forests composition and even a shift to dry meadows due to insufficient moisture availability in shallow alpine soils.

Suggested Citation

  • Christoph Schwörer & David M. Fisher & Daniel G. Gavin & Christian Temperli & Patrick J. Bartlein, 2016. "Modeling postglacial vegetation dynamics of temperate forests on the Olympic Peninsula (WA, USA) with special regard to snowpack," Climatic Change, Springer, vol. 137(3), pages 379-394, August.
  • Handle: RePEc:spr:climat:v:137:y:2016:i:3:d:10.1007_s10584-016-1696-z
    DOI: 10.1007/s10584-016-1696-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1696-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1696-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Salathé & L. Leung & Yun Qian & Yongxin Zhang, 2010. "Regional climate model projections for the State of Washington," Climatic Change, Springer, vol. 102(1), pages 51-75, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irauschek, Florian & Barka, Ivan & Bugmann, Harald & Courbaud, Benoit & Elkin, Che & Hlásny, Tomáš & Klopcic, Matija & Mina, Marco & Rammer, Werner & Lexer, Manfred J, 2021. "Evaluating five forest models using multi-decadal inventory data from mountain forests," Ecological Modelling, Elsevier, vol. 445(C).
    2. Huber, Nica & Bugmann, Harald & Lafond, Valentine, 2018. "Global sensitivity analysis of a dynamic vegetation model: Model sensitivity depends on successional time, climate and competitive interactions," Ecological Modelling, Elsevier, vol. 368(C), pages 377-390.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bastian, Christopher T. & Gray, Stephen T. & Peck, Dannele E. & Ritten, John P. & Hansen, Kristiana M. & Krall, James M. & Paisley, Steven I., 2011. "The Nature of Climate Science for the Rocky Mountain West: Implications for Economists Trying to Help Agriculture Adapt," Western Economics Forum, Western Agricultural Economics Association, vol. 10(2), pages 1-10.
    2. Ludmila Floková & Tomáš Mikita, 2023. "Landscape-Scale Long-Term Drought Prevalence Mapping for Small Municipalities Adaptation, the Czech Republic Case Study," Land, MDPI, vol. 12(10), pages 1-21, October.
    3. M. Mortezapour & B. Menounos & P. L. Jackson & A. R. Erler, 2022. "Future Snow Changes over the Columbia Mountains, Canada, using a Distributed Snow Model," Climatic Change, Springer, vol. 172(1), pages 1-24, May.
    4. Suhyung Jang & M. Levent Kavvas & Kei Ishida & Toan Trinh & Noriaki Ohara & Shuichi Kure & Z. Q. Chen & Michael L. Anderson & G. Matanga & Kara J. Carr, 2017. "A Performance Evaluation of Dynamical Downscaling of Precipitation over Northern California," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    5. Oliver Grah & Jezra Beaulieu, 2013. "The effect of climate change on glacier ablation and baseflow support in the Nooksack River basin and implications on Pacific salmonid species protection and recovery," Climatic Change, Springer, vol. 120(3), pages 657-670, October.
    6. S. Kotlarski & T. Bosshard & D. Lüthi & P. Pall & C. Schär, 2012. "Elevation gradients of European climate change in the regional climate model COSMO-CLM," Climatic Change, Springer, vol. 112(2), pages 189-215, May.
    7. Yongxin Zhang & Yun Qian & Valérie Dulière & Eric Salathé & L. Leung, 2012. "ENSO anomalies over the Western United States: present and future patterns in regional climate simulations," Climatic Change, Springer, vol. 110(1), pages 315-346, January.
    8. Jeremy Littell & David Peterson & Constance Millar & Kathy O’Halloran, 2012. "U.S. National Forests adapt to climate change through Science–Management partnerships," Climatic Change, Springer, vol. 110(1), pages 269-296, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:137:y:2016:i:3:d:10.1007_s10584-016-1696-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.