IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v353y2017icp17-27.html
   My bibliography  Save this article

Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties

Author

Listed:
  • Koo, Kyung Ah
  • Park, Seon Uk
  • Kong, Woo-Seok
  • Hong, Seungbum
  • Jang, Inyoung
  • Seo, Changwan

Abstract

The projections of species distribution models (SDMs) have provided critical knowledge for conservation planning under climate change in the Republic of Korea. However, uncertainty about the SDM projections has been criticized as a major challenge to reliable projections. The present research investigated uncertainty among competing models (Model uncertainty) and uncertainty of future climate conditions (climate uncertainty) driving from different GCMs and CO2 emission scenarios in predicting the future distributions of plants. For this purpose, using nine single-model algorithms and the pre-evaluation weighted ensemble method, we modeled the geographical distributions of Silver Magnolia (Machilus thunbergii Siebold & Zucc.), a warm-adapted evergreen broadleaved tree; furthermore, we predicted its future distributions under 20 climate change scenarios (5 global circulation models (GCMs)×4 CO2 emission scenarios (RCPs)). The results showed a great variation in the accuracies of nine single-model projections: the mean AUC values of nine single-models ranged from 0.764 (SER) to 0.970 (RF), and the mean TSS ranged from 0.529 (SRE) to 0.852 (RF). RF (mean AUC=0.970, mean TSS=0.852) and the ensemble forecast (AUC=0.968, TSS=0.804) showed the highest predictive power, while SRE showed the lowest. The future distributions of Silver Magnolia projected with the ensemble SDM clearly varied according to GCMs and RCPs. The twenty climate scenarios produced twenty different projections of the magnolia prospective distribution. GCMs commonly projected the maximum range expansion under RCP 8.5 in 2050 and 2070, but CO2 emission scenarios explaining the minimum expansions differed according to GCMs. In conclusion, our results show that GCMs, CO2 emission scenarios and SDM algorithms produce considerable variations in the SDM projections. Therefore, this research suggests that understanding of model and climate uncertainties is critical for an effective conservation planning in forest management under climate change on the Korean Peninsula.

Suggested Citation

  • Koo, Kyung Ah & Park, Seon Uk & Kong, Woo-Seok & Hong, Seungbum & Jang, Inyoung & Seo, Changwan, 2017. "Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties," Ecological Modelling, Elsevier, vol. 353(C), pages 17-27.
  • Handle: RePEc:eee:ecomod:v:353:y:2017:i:c:p:17-27
    DOI: 10.1016/j.ecolmodel.2016.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016305440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tony Prato, 2008. "Accounting for risk and uncertainty in determining preferred strategies for adapting to future climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(1), pages 47-60, January.
    2. Clara Deser & Reto Knutti & Susan Solomon & Adam S. Phillips, 2012. "Communication of the role of natural variability in future North American climate," Nature Climate Change, Nature, vol. 2(11), pages 775-779, November.
    3. Terry L. Root & Jeff T. Price & Kimberly R. Hall & Stephen H. Schneider & Cynthia Rosenzweig & J. Alan Pounds, 2003. "Fingerprints of global warming on wild animals and plants," Nature, Nature, vol. 421(6918), pages 57-60, January.
    4. Díaz-Varela, Ramón Alberto & Colombo, Roberto & Meroni, Michele & Calvo-Iglesias, María Silvia & Buffoni, Armando & Tagliaferri, Antonio, 2010. "Spatio-temporal analysis of alpine ecotones: A spatial explicit model targeting altitudinal vegetation shifts," Ecological Modelling, Elsevier, vol. 221(4), pages 621-633.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pecchi, Matteo & Marchi, Maurizio & Burton, Vanessa & Giannetti, Francesca & Moriondo, Marco & Bernetti, Iacopo & Bindi, Marco & Chirici, Gherardo, 2019. "Species distribution modelling to support forest management. A literature review," Ecological Modelling, Elsevier, vol. 411(C).
    2. Seungbum Hong & Inyoung Jang & Daegeun Kim & Suhwan Kim & Hyun Su Park & Kyungeun Lee, 2022. "Predicting Potential Habitat Changes of Two Invasive Alien Fish Species with Climate Change at a Regional Scale," Sustainability, MDPI, vol. 14(10), pages 1-12, May.
    3. Jia-Min Jiang & Lei Jin & Lei Huang & Wen-Ting Wang, 2022. "The Future Climate under Different CO 2 Emission Scenarios Significantly Influences the Potential Distribution of Achnatherum inebrians in China," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    4. Xumin Li & Zhiwen Yao & Qing Yuan & Rui Xing & Yuqin Guo & Dejun Zhang & Israr Ahmad & Wenhui Liu & Hairui Liu, 2023. "Prediction of Potential Distribution Area of Two Parapatric Species in Triosteum under Climate Change," Sustainability, MDPI, vol. 15(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prato, Tony, 2012. "Increasing resilience of natural protected areas to future climate change: A fuzzy adaptive management approach," Ecological Modelling, Elsevier, vol. 242(C), pages 46-53.
    2. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    3. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    4. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    5. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    6. Annie Paradis & Joe Elkinton & Katharine Hayhoe & John Buonaccorsi, 2008. "Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 541-554, June.
    7. Emiliano Mori & Andrea Sforzi & Giuseppe Bogliani & Pietro Milanesi, 2018. "Range expansion and redefinition of a crop-raiding rodent associated with global warming and temperature increase," Climatic Change, Springer, vol. 150(3), pages 319-331, October.
    8. William O Hobbs & Richard J Telford & H John B Birks & Jasmine E Saros & Roderick R O Hazewinkel & Bianca B Perren & Émilie Saulnier-Talbot & Alexander P Wolfe, 2010. "Quantifying Recent Ecological Changes in Remote Lakes of North America and Greenland Using Sediment Diatom Assemblages," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-12, April.
    9. Yingjie Niu & Zhentao Zou, 2024. "Robust Abatement Policy with Uncertainty About Environmental Disasters," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(4), pages 933-965, April.
    10. Michael R. Grose & James S. Risbey & Penny H. Whetton, 2017. "Tracking regional temperature projections from the early 1990s in light of variations in regional warming, including ‘warming holes’," Climatic Change, Springer, vol. 140(2), pages 307-322, January.
    11. Selvaraj Krishnan & Subhash Chander, 2015. "Simulation of climatic change impact on crop-pest interactions: a case study of rice pink stem borer Sesamia inferens (Walker)," Climatic Change, Springer, vol. 131(2), pages 259-272, July.
    12. S. Camici & L. Brocca & T. Moramarco, 2017. "Accuracy versus variability of climate projections for flood assessment in central Italy," Climatic Change, Springer, vol. 141(2), pages 273-286, March.
    13. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    14. Tieniu Wu & Huaqing Wu & Henry Lin & Tiantian Yang & Xiaoyang Wu & Yi Jie & Pei Tian, 2020. "Climate Change and Vegetation Evolution during the Transition from Marine Isotope Stage 5 to 4 Based on Two Typical Profiles at the Southern Chinese Loess Plateau," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    15. Disha Sachan & Pankaj Kumar & Md. Saquib Saharwardi, 2022. "Contemporary climate change velocity for near-surface temperatures over India," Climatic Change, Springer, vol. 173(3), pages 1-19, August.
    16. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    17. Christopher W. Callahan & Justin S. Mankin, 2022. "National attribution of historical climate damages," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
    18. William Nikolakis & Quentin Grafton, 2011. "Are there incentives to integrate to land and water management across northern Australia?," Environmental Economics Research Hub Research Reports 10109, Environmental Economics Research Hub, Crawford School of Public Policy, The Australian National University.
    19. Ferenc L. Toth & Eva Hizsnyik, 2005. "Managing The Inconceivable: Participatory Assessments Of Impacts And Responses To Extreme Climate Change," Working Papers FNU-74, Research unit Sustainability and Global Change, Hamburg University, revised May 2005.
    20. Víctor Rincón & Javier Velázquez & Derya Gülçin & Aida López-Sánchez & Carlos Jiménez & Ali Uğur Özcan & Juan Carlos López-Almansa & Tomás Santamaría & Daniel Sánchez-Mata & Kerim Çiçek, 2023. "Mapping Priority Areas for Connectivity of Yellow-Winged Darter ( Sympetrum flaveolum , Linnaeus 1758) under Climate Change," Land, MDPI, vol. 12(2), pages 1-39, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:353:y:2017:i:c:p:17-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.