IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v353y2017icp17-27.html
   My bibliography  Save this article

Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties

Author

Listed:
  • Koo, Kyung Ah
  • Park, Seon Uk
  • Kong, Woo-Seok
  • Hong, Seungbum
  • Jang, Inyoung
  • Seo, Changwan

Abstract

The projections of species distribution models (SDMs) have provided critical knowledge for conservation planning under climate change in the Republic of Korea. However, uncertainty about the SDM projections has been criticized as a major challenge to reliable projections. The present research investigated uncertainty among competing models (Model uncertainty) and uncertainty of future climate conditions (climate uncertainty) driving from different GCMs and CO2 emission scenarios in predicting the future distributions of plants. For this purpose, using nine single-model algorithms and the pre-evaluation weighted ensemble method, we modeled the geographical distributions of Silver Magnolia (Machilus thunbergii Siebold & Zucc.), a warm-adapted evergreen broadleaved tree; furthermore, we predicted its future distributions under 20 climate change scenarios (5 global circulation models (GCMs)×4 CO2 emission scenarios (RCPs)). The results showed a great variation in the accuracies of nine single-model projections: the mean AUC values of nine single-models ranged from 0.764 (SER) to 0.970 (RF), and the mean TSS ranged from 0.529 (SRE) to 0.852 (RF). RF (mean AUC=0.970, mean TSS=0.852) and the ensemble forecast (AUC=0.968, TSS=0.804) showed the highest predictive power, while SRE showed the lowest. The future distributions of Silver Magnolia projected with the ensemble SDM clearly varied according to GCMs and RCPs. The twenty climate scenarios produced twenty different projections of the magnolia prospective distribution. GCMs commonly projected the maximum range expansion under RCP 8.5 in 2050 and 2070, but CO2 emission scenarios explaining the minimum expansions differed according to GCMs. In conclusion, our results show that GCMs, CO2 emission scenarios and SDM algorithms produce considerable variations in the SDM projections. Therefore, this research suggests that understanding of model and climate uncertainties is critical for an effective conservation planning in forest management under climate change on the Korean Peninsula.

Suggested Citation

  • Koo, Kyung Ah & Park, Seon Uk & Kong, Woo-Seok & Hong, Seungbum & Jang, Inyoung & Seo, Changwan, 2017. "Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties," Ecological Modelling, Elsevier, vol. 353(C), pages 17-27.
  • Handle: RePEc:eee:ecomod:v:353:y:2017:i:c:p:17-27
    DOI: 10.1016/j.ecolmodel.2016.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016305440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tony Prato, 2008. "Accounting for risk and uncertainty in determining preferred strategies for adapting to future climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(1), pages 47-60, January.
    2. Clara Deser & Reto Knutti & Susan Solomon & Adam S. Phillips, 2012. "Communication of the role of natural variability in future North American climate," Nature Climate Change, Nature, vol. 2(11), pages 775-779, November.
    3. Terry L. Root & Jeff T. Price & Kimberly R. Hall & Stephen H. Schneider & Cynthia Rosenzweig & J. Alan Pounds, 2003. "Fingerprints of global warming on wild animals and plants," Nature, Nature, vol. 421(6918), pages 57-60, January.
    4. Díaz-Varela, Ramón Alberto & Colombo, Roberto & Meroni, Michele & Calvo-Iglesias, María Silvia & Buffoni, Armando & Tagliaferri, Antonio, 2010. "Spatio-temporal analysis of alpine ecotones: A spatial explicit model targeting altitudinal vegetation shifts," Ecological Modelling, Elsevier, vol. 221(4), pages 621-633.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pecchi, Matteo & Marchi, Maurizio & Burton, Vanessa & Giannetti, Francesca & Moriondo, Marco & Bernetti, Iacopo & Bindi, Marco & Chirici, Gherardo, 2019. "Species distribution modelling to support forest management. A literature review," Ecological Modelling, Elsevier, vol. 411(C).
    2. Seungbum Hong & Inyoung Jang & Daegeun Kim & Suhwan Kim & Hyun Su Park & Kyungeun Lee, 2022. "Predicting Potential Habitat Changes of Two Invasive Alien Fish Species with Climate Change at a Regional Scale," Sustainability, MDPI, vol. 14(10), pages 1-12, May.
    3. Jia-Min Jiang & Lei Jin & Lei Huang & Wen-Ting Wang, 2022. "The Future Climate under Different CO 2 Emission Scenarios Significantly Influences the Potential Distribution of Achnatherum inebrians in China," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    4. Xumin Li & Zhiwen Yao & Qing Yuan & Rui Xing & Yuqin Guo & Dejun Zhang & Israr Ahmad & Wenhui Liu & Hairui Liu, 2023. "Prediction of Potential Distribution Area of Two Parapatric Species in Triosteum under Climate Change," Sustainability, MDPI, vol. 15(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prato, Tony, 2012. "Increasing resilience of natural protected areas to future climate change: A fuzzy adaptive management approach," Ecological Modelling, Elsevier, vol. 242(C), pages 46-53.
    2. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    3. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    4. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    5. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    6. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    7. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    8. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    9. Rashwan, Sherif S. & Shaaban, Ahmed M. & Al-Suliman, Fahad, 2017. "A comparative study of a small-scale solar PV power plant in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 313-318.
    10. Annie Paradis & Joe Elkinton & Katharine Hayhoe & John Buonaccorsi, 2008. "Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 541-554, June.
    11. Phong Nguyen Thanh & Thinh Le Van & Tuan Tran Minh & Tuyen Huynh Ngoc & Worapong Lohpaisankrit & Quoc Bao Pham & Alexandre S. Gagnon & Proloy Deb & Nhat Truong Pham & Duong Tran Anh & Vuong Nguyen Din, 2023. "Adapting to Climate-Change-Induced Drought Stress to Improve Water Management in Southeast Vietnam," Sustainability, MDPI, vol. 15(11), pages 1-27, June.
    12. Robert J. Knell & Stephen J. Thackeray, 2016. "Voltinism and resilience to climate-induced phenological mismatch," Climatic Change, Springer, vol. 137(3), pages 525-539, August.
    13. Rowell, Jonathan T., 2009. "The limitation of species range: A consequence of searching along resource gradients," Theoretical Population Biology, Elsevier, vol. 75(2), pages 216-227.
    14. Lee Hannah & Marc Steele & Emily Fung & Pablo Imbach & Lorriane Flint & Alan Flint, 2017. "Climate change influences on pollinator, forest, and farm interactions across a climate gradient," Climatic Change, Springer, vol. 141(1), pages 63-75, March.
    15. Zdeněk Laštůvka, 2009. "Climate change and its possible influence on the occurrence and importance of insect pests," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 45(SpecialIs), pages 53-62.
    16. Wei Xu & Shuaimeng Zhu & Tianli Yang & Jimin Cheng & Jingwei Jin, 2022. "Maximum Entropy Niche-Based Modeling for Predicting the Potential Suitable Habitats of a Traditional Medicinal Plant ( Rheum nanum ) in Asia under Climate Change Conditions," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
    17. Emiliano Mori & Andrea Sforzi & Giuseppe Bogliani & Pietro Milanesi, 2018. "Range expansion and redefinition of a crop-raiding rodent associated with global warming and temperature increase," Climatic Change, Springer, vol. 150(3), pages 319-331, October.
    18. Mazzone, Antonella, 2020. "Thermal comfort and cooling strategies in the Brazilian Amazon. An assessment of the concept of fuel poverty in tropical climates," Energy Policy, Elsevier, vol. 139(C).
    19. Wayne D Hawkins & Sarah E DuRant, 2020. "Applications of machine learning in behavioral ecology: Quantifying avian incubation behavior and nest conditions in relation to environmental temperature," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-13, August.
    20. William O Hobbs & Richard J Telford & H John B Birks & Jasmine E Saros & Roderick R O Hazewinkel & Bianca B Perren & Émilie Saulnier-Talbot & Alexander P Wolfe, 2010. "Quantifying Recent Ecological Changes in Remote Lakes of North America and Greenland Using Sediment Diatom Assemblages," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:353:y:2017:i:c:p:17-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.