IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v350y2017icp11-29.html
   My bibliography  Save this article

Simulating ungulate herbivory across forest landscapes: A browsing extension for LANDIS-II

Author

Listed:
  • De Jager, Nathan R.
  • Drohan, Patrick J.
  • Miranda, Brian M.
  • Sturtevant, Brian R.
  • Stout, Susan L.
  • Royo, Alejandro A.
  • Gustafson, Eric J.
  • Romanski, Mark C.

Abstract

Browsing ungulates alter forest productivity and vegetation succession through selective foraging on species that often dominate early succession. However, the long-term and large-scale effects of browsing on forest succession are not possible to project without the use of simulation models. To explore the effects of ungulates on succession in a spatially explicit manner, we developed a Browse Extension that simulates the effects of browsing ungulates on the growth and survival of plant species cohorts within the LANDIS-II spatially dynamic forest landscape simulation model framework. We demonstrate the capabilities of the new extension and explore the spatial effects of ungulates on forest composition and dynamics using two case studies. The first case study examined the long-term effects of persistently high white-tailed deer browsing rates in the northern hardwood forests of the Allegheny National Forest, USA. In the second case study, we incorporated a dynamic ungulate population model to simulate interactions between the moose population and boreal forest landscape of Isle Royale National Park, USA. In both model applications, browsing reduced total aboveground live biomass and caused shifts in forest composition. Simulations that included effects of browsing resulted in successional patterns that were more similar to those observed in the study regions compared to simulations that did not incorporate browsing effects. Further, model estimates of moose population density and available forage biomass were similar to previously published field estimates at Isle Royale and in other moose-boreal forest systems. Our simulations suggest that neglecting effects of browsing when modeling forest succession in ecosystems known to be influenced by ungulates may result in flawed predictions of aboveground biomass and tree species composition.

Suggested Citation

  • De Jager, Nathan R. & Drohan, Patrick J. & Miranda, Brian M. & Sturtevant, Brian R. & Stout, Susan L. & Royo, Alejandro A. & Gustafson, Eric J. & Romanski, Mark C., 2017. "Simulating ungulate herbivory across forest landscapes: A browsing extension for LANDIS-II," Ecological Modelling, Elsevier, vol. 350(C), pages 11-29.
  • Handle: RePEc:eee:ecomod:v:350:y:2017:i:c:p:11-29
    DOI: 10.1016/j.ecolmodel.2017.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016304380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scheller, Robert M. & Domingo, James B. & Sturtevant, Brian R. & Williams, Jeremy S. & Rudy, Arnold & Gustafson, Eric J. & Mladenoff, David J., 2007. "Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution," Ecological Modelling, Elsevier, vol. 201(3), pages 409-419.
    2. Riggs, Robert A. & Keane, Robert E. & Cimon, Norm & Cook, Rachel & Holsinger, Lisa & Cook, John & DelCurto, Timothy & Baggett, L.Scott & Justice, Donald & Powell, David & Vavra, Martin & Naylor, Bridg, 2015. "Biomass and fire dynamics in a temperate forest-grassland mosaic: Integrating multi-species herbivory, climate, and fire with the FireBGCv2/GrazeBGC system," Ecological Modelling, Elsevier, vol. 296(C), pages 57-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barrere, Julien & Ligot, Gauthier & Boulanger, Vincent & Collet, Catherine & Courbaud, Benoît & de Coligny, François & Mårell, Anders & Saïd, Sonia & Balandier, Philippe, 2024. "Oak regeneration facing deer browsing: Can competition between saplings offset the diversion effect? A simulation experiment," Ecological Modelling, Elsevier, vol. 489(C).
    2. Haga, Chihiro & Hotta, Wataru & Inoue, Takahiro & Matsui, Takanori & Aiba, Masahiro & Owari, Toshiaki & Suzuki, Satoshi N. & Shibata, Hideaki & Morimoto, Junko, 2022. "Modeling Tree Recovery in Wind-Disturbed Forests with Dense Understory Species under Climate Change," Ecological Modelling, Elsevier, vol. 472(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scheller, Robert & Kretchun, Alec & Hawbaker, Todd J. & Henne, Paul D., 2019. "A landscape model of variable social-ecological fire regimes," Ecological Modelling, Elsevier, vol. 401(C), pages 85-93.
    2. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    3. Ager, Alan A. & Barros, Ana M.G. & Day, Michelle A. & Preisler, Haiganoush K. & Spies, Thomas A. & Bolte, John, 2018. "Analyzing fine-scale spatiotemporal drivers of wildfire in a forest landscape model," Ecological Modelling, Elsevier, vol. 384(C), pages 87-102.
    4. Conlisk, Erin & Syphard, Alexandra D. & Franklin, Janet & Regan, Helen M., 2015. "Predicting the impact of fire on a vulnerable multi-species community using a dynamic vegetation model," Ecological Modelling, Elsevier, vol. 301(C), pages 27-39.
    5. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    6. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    7. Haga, Chihiro & Hotta, Wataru & Inoue, Takahiro & Matsui, Takanori & Aiba, Masahiro & Owari, Toshiaki & Suzuki, Satoshi N. & Shibata, Hideaki & Morimoto, Junko, 2022. "Modeling Tree Recovery in Wind-Disturbed Forests with Dense Understory Species under Climate Change," Ecological Modelling, Elsevier, vol. 472(C).
    8. Fitts, Lucia A. & Fraser, Jacob S. & Miranda, Brian R. & Domke, Grant M. & Russell, Matthew B. & Sturtevant, Brian R., 2023. "An iterative site-scale approach to calibrate and corroborate successional processes within a forest landscape model," Ecological Modelling, Elsevier, vol. 477(C).
    9. Fabritius, Henna & Knegt, Henrik de & Ovaskainen, Otso, 2021. "Effects of a mobile disturbance pattern on dynamic patch networks and metapopulation persistence," Ecological Modelling, Elsevier, vol. 460(C).
    10. Karam, Sarah L. & Weisberg, Peter J. & Scheller, Robert M. & Johnson, Dale W. & Miller, W. Wally, 2013. "Development and evaluation of a nutrient cycling extension for the LANDIS-II landscape simulation model," Ecological Modelling, Elsevier, vol. 250(C), pages 45-57.
    11. Arseneault, Justin E. & Saunders, Mike R., 2012. "Incorporating canopy gap-induced growth responses into spatially implicit growth model projections," Ecological Modelling, Elsevier, vol. 237, pages 120-131.
    12. Chonggang Xu & George Gertner & Robert Scheller, 2012. "Importance of colonization and competition in forest landscape response to global climatic change," Climatic Change, Springer, vol. 110(1), pages 53-83, January.
    13. Daigneault, Adam & Simons-Legaard, Erin & Weiskittel, Aaron, 2024. "Tradeoffs and synergies of optimized management for maximizing carbon sequestration across complex landscapes and diverse ecosystem services," Forest Policy and Economics, Elsevier, vol. 161(C).
    14. Scheller, Robert M. & Hua, Dong & Bolstad, Paul V. & Birdsey, Richard A. & Mladenoff, David J., 2011. "The effects of forest harvest intensity in combination with wind disturbance on carbon dynamics in Lake States Mesic Forests," Ecological Modelling, Elsevier, vol. 222(1), pages 144-153.
    15. Cantarello, Elena & Newton, Adrian C. & Hill, Ross A. & Tejedor-Garavito, Natalia & Williams-Linera, Guadalupe & López-Barrera, Fabiola & Manson, Robert H. & Golicher, Duncan J., 2011. "Simulating the potential for ecological restoration of dryland forests in Mexico under different disturbance regimes," Ecological Modelling, Elsevier, vol. 222(5), pages 1112-1128.
    16. Liang, Yu & He, Hong S. & Wang, Wen J. & Fraser, Jacob S. & Wu, ZhiWei & Xu, Jiawei, 2015. "The site-scale processes affect species distribution predictions of forest landscape models," Ecological Modelling, Elsevier, vol. 300(C), pages 89-101.
    17. Langhammer, Maria & Thober, Jule & Lange, Martin & Frank, Karin & Grimm, Volker, 2019. "Agricultural landscape generators for simulation models: A review of existing solutions and an outline of future directions," Ecological Modelling, Elsevier, vol. 393(C), pages 135-151.
    18. Inglis, Nicole C. & Vukomanovic, Jelena, 2020. "Climate change disproportionately affects visual quality of cultural ecosystem services in a mountain region," Ecosystem Services, Elsevier, vol. 45(C).
    19. de Bruijn, Arjan & Gustafson, Eric J. & Sturtevant, Brian R. & Foster, Jane R. & Miranda, Brian R. & Lichti, Nathanael I. & Jacobs, Douglass F., 2014. "Toward more robust projections of forest landscape dynamics under novel environmental conditions: Embedding PnET within LANDIS-II," Ecological Modelling, Elsevier, vol. 287(C), pages 44-57.
    20. Keane, Robert E. & McKenzie, Donald & Falk, Donald A. & Smithwick, Erica A.H. & Miller, Carol & Kellogg, Lara-Karena B., 2015. "Representing climate, disturbance, and vegetation interactions in landscape models," Ecological Modelling, Elsevier, vol. 309, pages 33-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:350:y:2017:i:c:p:11-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.