IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v329y2016icp29-40.html
   My bibliography  Save this article

Mechanics of multiple feedbacks in benthic coral reef communities

Author

Listed:
  • Kubicek, Andreas
  • Reuter, Hauke

Abstract

Coral reefs are subject to extraordinary alterations under changing environmental conditions and increasing human resource use. Here we use a generic, spatially explicit, individual-based model to analyze fundamental interrelations and feedback loops relevant for coral reef dynamics, including recruitment, herbivory, benthic interactions, and fisheries. We assess the influence of three different fishing regimes (i.e. no-take, non-destructive and destructive fishing) and larval connectivity on the resilience of a coral reef community and explore respective thresholds. Simulation results show that changes in one of these parameters and a resulting imbalance in one feedback loop can disorder the whole interplay of regulating processes. Under many analyzed conditions alterations of herbivory or recruitment may induce a self-enhancing degradation of a coral dominated ecosystem state. Model results show that reefs can persist under non-destructive fishing with adequate larval connectivity but isolated reef sites are threatened at current modes of perturbations, because low larval recruitment does not allow for sufficient post-disturbance recovery. At high connectivity levels, fast growing species dominate and may displace other species. Often, these species increase three-dimensional structure, and thus, refuges for herbivores. However, this also reduces functional redundancy and if the dominant species (here Acropora muricata) is highly susceptible to thermally induced bleaching an extreme temperature event may cause overall coral extirpation and a regime shift to algal dominance. The model constitutes a virtual laboratory for reef studies, gives insights on how particular effectors may trigger cascades in the coral community, and hence highlights the necessity to analyze mechanisms not only separately, but within the whole system's context to fully grasp complex responses in ecosystems.

Suggested Citation

  • Kubicek, Andreas & Reuter, Hauke, 2016. "Mechanics of multiple feedbacks in benthic coral reef communities," Ecological Modelling, Elsevier, vol. 329(C), pages 29-40.
  • Handle: RePEc:eee:ecomod:v:329:y:2016:i:c:p:29-40
    DOI: 10.1016/j.ecolmodel.2016.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016300473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.02.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas A. J. Graham & Simon Jennings & M. Aaron MacNeil & David Mouillot & Shaun K. Wilson, 2015. "Predicting climate-driven regime shifts versus rebound potential in coral reefs," Nature, Nature, vol. 518(7537), pages 94-97, February.
    2. Buenau, Kate E. & Price, Nichole N. & Nisbet, Roger M., 2012. "Size dependence, facilitation, and microhabitats mediate space competition between coral and crustose coralline algae in a spatially explicit model," Ecological Modelling, Elsevier, vol. 237, pages 23-33.
    3. Peter J. Mumby & Alan Hastings & Helen J. Edwards, 2007. "Thresholds and the resilience of Caribbean coral reefs," Nature, Nature, vol. 450(7166), pages 98-101, November.
    4. Ruiz Sebastián, Carlos & McClanahan, Timothy R., 2013. "Description and validation of production processes in the coral reef ecosystem model CAFFEE (Coral–Algae–Fish-Fisheries Ecosystem Energetics) with a fisheries closure and climatic disturbance," Ecological Modelling, Elsevier, vol. 263(C), pages 326-348.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miñarro, Sara & Leins, Johannes & Acevedo-Trejos, Esteban & Fulton, Elizabeth A. & Reuter, Hauke, 2018. "SEAMANCORE: A spatially explicit simulation model for assisting the local MANagement of COral REefs," Ecological Modelling, Elsevier, vol. 384(C), pages 296-307.
    2. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    3. Jorge H. Maldonado & Rocío del Pilar Moreno-Sánchez & Tatiana G. Zárate & Camila Andrea Barrera, 2013. "Valoración económica del subsistema de Áreas Marinas Protegidas en Colombia: un análisis para formuladores de política desde un enfoque multi-servicios y multi-agentes," Documentos CEDE 11933, Universidad de los Andes, Facultad de Economía, CEDE.
    4. González-Rivero, Manuel & Yakob, Laith & Mumby, Peter J., 2011. "The role of sponge competition on coral reef alternative steady states," Ecological Modelling, Elsevier, vol. 222(11), pages 1847-1853.
    5. Chaijaroen, Pasita, 2019. "Long-lasting income shocks and adaptations: Evidence from coral bleaching in Indonesia," Journal of Development Economics, Elsevier, vol. 136(C), pages 119-136.
    6. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    7. Clancy, Damian & Tanner, Jason E. & McWilliam, Stephen & Spencer, Matthew, 2010. "Quantifying parameter uncertainty in a coral reef model using Metropolis-Coupled Markov Chain Monte Carlo," Ecological Modelling, Elsevier, vol. 221(10), pages 1337-1347.
    8. Huang, Zaitang, 2017. "Positive recurrent of stochastic coral reefs model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 751-761.
    9. Renken, Henk & Mumby, Peter J., 2009. "Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach," Ecological Modelling, Elsevier, vol. 220(9), pages 1305-1314.
    10. Andrew R. Tilman & Elisabeth H. Krueger & Lisa C. McManus & James R. Watson, 2023. "Maintaining human wellbeing as socio-environmental systems undergo regime shifts," Papers 2309.04578, arXiv.org.
    11. Larsen, Trine C. & Browne, Nicola K. & Erichsen, Anders C. & Tun, Karenne & Todd, Peter A., 2017. "Modelling for management: Coral photo-physiology and growth potential under varying turbidity regimes," Ecological Modelling, Elsevier, vol. 362(C), pages 1-12.
    12. Auad, Guillermo & Blythe, Jonathan & Coffman, Kim & Fath, Brian D., 2018. "A dynamic management framework for socio-ecological system stewardship: A case study for the United States Bureau of Ocean Energy Management," MarXiv nurca, Center for Open Science.
    13. Schutter, Marleen S. & Hicks, Christina C. & Phelps, Jacob & Belmont, Clara, 2021. "Disentangling ecosystem services preferences and values," World Development, Elsevier, vol. 146(C).
    14. Tommi Perälä & Esben M Olsen & Jeffrey A Hutchings, 2020. "Disentangling conditional effects of multiple regime shifts on Atlantic cod productivity," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-16, November.
    15. Mollie Chapman & Susanna Klassen & Maayan Kreitzman & Adrian Semmelink & Kelly Sharp & Gerald Singh & Kai M. A. Chan, 2017. "5 Key Challenges and Solutions for Governing Complex Adaptive (Food) Systems," Sustainability, MDPI, vol. 9(9), pages 1-30, September.
    16. Marzloff, Martin P. & Johnson, Craig R. & Little, L. Rich & Soulié, Jean-Christophe & Ling, Scott D. & Frusher, Stewart D., 2013. "Sensitivity analysis and pattern-oriented validation of TRITON, a model with alternative community states: Insights on temperate rocky reefs dynamics," Ecological Modelling, Elsevier, vol. 258(C), pages 16-32.
    17. Shannon G. Klein & Cassandra Roch & Carlos M. Duarte, 2024. "Systematic review of the uncertainty of coral reef futures under climate change," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Elena Gissi & Stefano Menegon & Alessandro Sarretta & Federica Appiotti & Denis Maragno & Andrea Vianello & Daniel Depellegrin & Chiara Venier & Andrea Barbanti, 2017. "Addressing uncertainty in modelling cumulative impacts within maritime spatial planning in the Adriatic and Ionian region," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-30, July.
    19. Fenichel, Eli P. & Horan, Richard D., 2016. "Tinbergen and tipping points: Could some thresholds be policy-induced?," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 137-152.
    20. Francomano, Elisa & Hilker, Frank M. & Paliaga, Marta & Venturino, Ezio, 2018. "Separatrix reconstruction to identify tipping points in an eco-epidemiological model," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 80-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:329:y:2016:i:c:p:29-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.