IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i11p1847-1853.html
   My bibliography  Save this article

The role of sponge competition on coral reef alternative steady states

Author

Listed:
  • González-Rivero, Manuel
  • Yakob, Laith
  • Mumby, Peter J.

Abstract

Sponges constitute an abundant and functionally important component of coral reef systems. Given their demonstrated resistance to environmental stress, it might be expected that the role of sponges in reef systems under modern regimes of frequent and severe disturbance may become even more substantial. Disturbances have recently reshaped the community structure of many Caribbean coral reefs shifting them towards a state of persistent low coral cover and often a dominance of macroalgae. Using competition and growth rates recorded from Glover's Atoll in Belize, we parameterise a mathematical model used to simulate the three-way competition between sponges, macroalgae and coral. We use the model to determine the range of parameters in which each of the three species might be expected to dominate. Emergent properties arise from our simple model of this complex system, and these include a special case in which heightened competitive ability of macroalgae versus coral may counter-intuitively prove to be advantageous to the persistence of corals. Importantly, we show that even under scenarios whereby sponges fail to invade the system, inclusion of this third antagonist can qualitatively affect the likelihood of alternative stable states – generally in favour of macroalgal dominance. The interplay between multi-species competition and predation is complex, but our efforts highlight a key process that has, until now, remained unexplored: the extent to which sponges dissipate algal grazing pressure by providing generalist fish with an alternative food source. We highlight the necessity of identifying the extent by which this process takes place in tropical systems in order to improve projections of alternative stable states for Caribbean coral reefs.

Suggested Citation

  • González-Rivero, Manuel & Yakob, Laith & Mumby, Peter J., 2011. "The role of sponge competition on coral reef alternative steady states," Ecological Modelling, Elsevier, vol. 222(11), pages 1847-1853.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:11:p:1847-1853
    DOI: 10.1016/j.ecolmodel.2011.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011001438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riegl, Bernhard M. & Purkis, Samuel J., 2009. "Model of coral population response to accelerated bleaching and mass mortality in a changing climate," Ecological Modelling, Elsevier, vol. 220(2), pages 192-208.
    2. Peter J. Mumby & Alan Hastings & Helen J. Edwards, 2007. "Thresholds and the resilience of Caribbean coral reefs," Nature, Nature, vol. 450(7166), pages 98-101, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buenau, Kate E. & Price, Nichole N. & Nisbet, Roger M., 2012. "Size dependence, facilitation, and microhabitats mediate space competition between coral and crustose coralline algae in a spatially explicit model," Ecological Modelling, Elsevier, vol. 237, pages 23-33.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    2. Jorge H. Maldonado & Rocío del Pilar Moreno-Sánchez & Tatiana G. Zárate & Camila Andrea Barrera, 2013. "Valoración económica del subsistema de Áreas Marinas Protegidas en Colombia: un análisis para formuladores de política desde un enfoque multi-servicios y multi-agentes," Documentos CEDE 11933, Universidad de los Andes, Facultad de Economía, CEDE.
    3. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    4. Clancy, Damian & Tanner, Jason E. & McWilliam, Stephen & Spencer, Matthew, 2010. "Quantifying parameter uncertainty in a coral reef model using Metropolis-Coupled Markov Chain Monte Carlo," Ecological Modelling, Elsevier, vol. 221(10), pages 1337-1347.
    5. Huang, Zaitang, 2017. "Positive recurrent of stochastic coral reefs model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 751-761.
    6. Renken, Henk & Mumby, Peter J., 2009. "Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach," Ecological Modelling, Elsevier, vol. 220(9), pages 1305-1314.
    7. Andrew R. Tilman & Elisabeth H. Krueger & Lisa C. McManus & James R. Watson, 2023. "Maintaining human wellbeing as socio-environmental systems undergo regime shifts," Papers 2309.04578, arXiv.org.
    8. Larsen, Trine C. & Browne, Nicola K. & Erichsen, Anders C. & Tun, Karenne & Todd, Peter A., 2017. "Modelling for management: Coral photo-physiology and growth potential under varying turbidity regimes," Ecological Modelling, Elsevier, vol. 362(C), pages 1-12.
    9. Miñarro, Sara & Leins, Johannes & Acevedo-Trejos, Esteban & Fulton, Elizabeth A. & Reuter, Hauke, 2018. "SEAMANCORE: A spatially explicit simulation model for assisting the local MANagement of COral REefs," Ecological Modelling, Elsevier, vol. 384(C), pages 296-307.
    10. R. Buddemeier & Diana Lane & J. Martinich, 2011. "Modeling regional coral reef responses to global warming and changes in ocean chemistry: Caribbean case study," Climatic Change, Springer, vol. 109(3), pages 375-397, December.
    11. Auad, Guillermo & Blythe, Jonathan & Coffman, Kim & Fath, Brian D., 2018. "A dynamic management framework for socio-ecological system stewardship: A case study for the United States Bureau of Ocean Energy Management," MarXiv nurca, Center for Open Science.
    12. Kubicek, Andreas & Reuter, Hauke, 2016. "Mechanics of multiple feedbacks in benthic coral reef communities," Ecological Modelling, Elsevier, vol. 329(C), pages 29-40.
    13. Mollie Chapman & Susanna Klassen & Maayan Kreitzman & Adrian Semmelink & Kelly Sharp & Gerald Singh & Kai M. A. Chan, 2017. "5 Key Challenges and Solutions for Governing Complex Adaptive (Food) Systems," Sustainability, MDPI, vol. 9(9), pages 1-30, September.
    14. Marzloff, Martin P. & Johnson, Craig R. & Little, L. Rich & Soulié, Jean-Christophe & Ling, Scott D. & Frusher, Stewart D., 2013. "Sensitivity analysis and pattern-oriented validation of TRITON, a model with alternative community states: Insights on temperate rocky reefs dynamics," Ecological Modelling, Elsevier, vol. 258(C), pages 16-32.
    15. Shannon G. Klein & Cassandra Roch & Carlos M. Duarte, 2024. "Systematic review of the uncertainty of coral reef futures under climate change," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Fenichel, Eli P. & Horan, Richard D., 2016. "Tinbergen and tipping points: Could some thresholds be policy-induced?," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 137-152.
    17. Francomano, Elisa & Hilker, Frank M. & Paliaga, Marta & Venturino, Ezio, 2018. "Separatrix reconstruction to identify tipping points in an eco-epidemiological model," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 80-91.
    18. Gabriel S. Sampson & James N. Sanchirico, 2019. "Exploitation of a Mobile Resource with Costly Cooperation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1135-1163, August.
    19. Nicholas A J Graham & Tim R McClanahan & M Aaron MacNeil & Shaun K Wilson & Nicholas V C Polunin & Simon Jennings & Pascale Chabanet & Susan Clark & Mark D Spalding & Yves Letourneur & Lionel Bigot & , 2008. "Climate Warming, Marine Protected Areas and the Ocean-Scale Integrity of Coral Reef Ecosystems," PLOS ONE, Public Library of Science, vol. 3(8), pages 1-9, August.
    20. Holmes, G. & Johnstone, R.W., 2010. "Modelling coral reef ecosystems with limited observational data," Ecological Modelling, Elsevier, vol. 221(8), pages 1173-1183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:11:p:1847-1853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.