IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53608-4.html
   My bibliography  Save this article

Reintroduction of resistant frogs facilitates landscape-scale recovery in the presence of a lethal fungal disease

Author

Listed:
  • Roland A. Knapp

    (University of California
    University of California)

  • Mark Q. Wilber

    (University of Tennessee Institute of Agriculture)

  • Maxwell B. Joseph

    (University of Colorado
    Planet)

  • Thomas C. Smith

    (University of California
    University of California)

  • Robert L. Grasso

    (Yosemite National Park)

Abstract

Vast alteration of the biosphere by humans is causing a sixth mass extinction, driven in part by an increase in infectious diseases. The emergence of the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) has devastated global amphibian biodiversity. Given the lack of any broadly applicable methods to reverse these impacts, the future of many amphibians appears grim. The Sierra Nevada yellow-legged frog (Rana sierrae) is highly susceptible to Bd infection and most R. sierrae populations are extirpated following disease outbreaks. However, some populations persist and eventually recover, and frogs in these recovering populations have increased resistance against infection. Here, we conduct a 15-year reintroduction study and show that frogs collected from recovering populations and reintroduced to vacant habitats can reestablish populations despite the presence of Bd. In addition, the likelihood of establishment is influenced by site, cohort, and frog attributes. Results from viability modeling suggest that many reintroduced populations have a low probability of extinction over 50 years. These results provide a rare example of how reintroduction of resistant individuals can allow the landscape-scale recovery of disease-impacted species, and have broad implications for amphibians and other taxa that are threatened with extinction by novel pathogens.

Suggested Citation

  • Roland A. Knapp & Mark Q. Wilber & Maxwell B. Joseph & Thomas C. Smith & Robert L. Grasso, 2024. "Reintroduction of resistant frogs facilitates landscape-scale recovery in the presence of a lethal fungal disease," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53608-4
    DOI: 10.1038/s41467-024-53608-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53608-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53608-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew C. Fisher & Daniel. A. Henk & Cheryl J. Briggs & John S. Brownstein & Lawrence C. Madoff & Sarah L. McCraw & Sarah J. Gurr, 2012. "Emerging fungal threats to animal, plant and ecosystem health," Nature, Nature, vol. 484(7393), pages 186-194, April.
    2. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolett Orosz & Tünde Tóthné Tóth & Gyöngyi Vargáné Gyuró & Zsoltné Tibor Nábrádi & Klára Hegedűsné Sorosi & Zsuzsa Nagy & Éva Rigó & Ádám Kaposi & Gabriella Gömöri & Cornelia Melinda Adi Santoso & A, 2022. "Comparison of Length of Hospital Stay for Community-Acquired Infections Due to Enteric Pathogens, Influenza Viruses and Multidrug-Resistant Bacteria: A Cross-Sectional Study in Hungary," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    2. Mudassar Arsalan & Omar Mubin & Fady Alnajjar & Belal Alsinglawi, 2020. "COVID-19 Global Risk: Expectation vs. Reality," IJERPH, MDPI, vol. 17(15), pages 1-10, August.
    3. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    4. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    5. Dong Sheng & Siyuan Jing & Xueqing He & Alexandra-Maria Klein & Heinz-R. Köhler & Thomas C. Wanger, 2024. "Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Ongolo, Symphorien & Giessen, Lukas & Karsenty, Alain & Tchamba, Martin & Krott, Max, 2021. "Forestland policies and politics in Africa: Recent evidence and new challenges," Forest Policy and Economics, Elsevier, vol. 127(C).
    7. Paige, Sarah B. & Malavé, Carly & Mbabazi, Edith & Mayer, Jonathan & Goldberg, Tony L., 2015. "Uncovering zoonoses awareness in an emerging disease ‘hotspot’," Social Science & Medicine, Elsevier, vol. 129(C), pages 78-86.
    8. Jianhua Wang & Guan-Zhu Han, 2023. "Genome mining shows that retroviruses are pervasively invading vertebrate genomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Livia Marchetti & Valentina Cattivelli & Claudia Cocozza & Fabio Salbitano & Marco Marchetti, 2020. "Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    10. Ivan Montiel & Junghoon Park & Bryan W. Husted & Andres Velez-Calle, 2022. "Tracing the connections between international business and communicable diseases," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 53(8), pages 1785-1804, October.
    11. Maxwell B Joseph & William E Stutz & Pieter T J Johnson, 2016. "Multilevel Models for the Distribution of Hosts and Symbionts," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    12. Laure Bonnaud & Nicolas Fortané, 2017. "Serge Morand and Muriel Figuié (eds), 2016, Emergence de maladies infectieuses. Risques et enjeux de société (The emergence of infectious diseases. Societal risks and stakes)," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(3), pages 225-228, December.
    13. Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
    14. Lin Zhang & Jason Rohr & Ruina Cui & Yusi Xin & Lixia Han & Xiaona Yang & Shimin Gu & Yuanbao Du & Jing Liang & Xuyu Wang & Zhengjun Wu & Qin Hao & Xuan Liu, 2022. "Biological invasions facilitate zoonotic disease emergences," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Elisa Giannone & Nuno Paixao & Xinle Pang, 2021. "The Geography of Pandemic Containment," Staff Working Papers 21-26, Bank of Canada.
    16. Ricardo Aguas & Neil M Ferguson, 2013. "Feature Selection Methods for Identifying Genetic Determinants of Host Species in RNA Viruses," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-10, October.
    17. Katarzyna Kubiak & Hanna Szymańska & Małgorzata Dmitryjuk & Ewa Dzika, 2022. "Abundance of Ixodes ricinus Ticks (Acari: Ixodidae) and the Diversity of Borrelia Species in Northeastern Poland," IJERPH, MDPI, vol. 19(12), pages 1-18, June.
    18. Anna C. Peterson & Himanshu Sharma & Arvind Kumar & Bruno M. Ghersi & Scott J. Emrich & Kurt J. Vandegrift & Amit Kapoor & Michael J. Blum, 2021. "Rodent Virus Diversity and Differentiation across Post-Katrina New Orleans," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    19. Blanco, Esther & Baier, Alexandra & Holzmeister, Felix & Jaber-Lopez, Tarek & Struwe, Natalie, 2022. "Substitution of social sustainability concerns under the Covid-19 pandemic," Ecological Economics, Elsevier, vol. 192(C).
    20. Rosemary A. McFarlane & Adrian C. Sleigh & Anthony J. McMichael, 2013. "Land-Use Change and Emerging Infectious Disease on an Island Continent," IJERPH, MDPI, vol. 10(7), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53608-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.