IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6875874.html
   My bibliography  Save this article

Existence and Globally Asymptotic Stability of Equilibrium Solution for Fractional-Order Hybrid BAM Neural Networks with Distributed Delays and Impulses

Author

Listed:
  • Hai Zhang
  • Renyu Ye
  • Jinde Cao
  • Ahmed Alsaedi

Abstract

This paper investigates the existence and globally asymptotic stability of equilibrium solution for Riemann-Liouville fractional-order hybrid BAM neural networks with distributed delays and impulses. The factors of such network systems including the distributed delays, impulsive effects, and two different fractional-order derivatives between the -layer and -layer are taken into account synchronously. Based on the contraction mapping principle, the sufficient conditions are derived to ensure the existence and uniqueness of the equilibrium solution for such network systems. By constructing a novel Lyapunov functional composed of fractional integral and definite integral terms, the globally asymptotic stability criteria of the equilibrium solution are obtained, which are dependent on the order of fractional derivative and network parameters. The advantage of our constructed method is that one may directly calculate integer-order derivative of the Lyapunov functional. A numerical example is also presented to show the validity and feasibility of the theoretical results.

Suggested Citation

  • Hai Zhang & Renyu Ye & Jinde Cao & Ahmed Alsaedi, 2017. "Existence and Globally Asymptotic Stability of Equilibrium Solution for Fractional-Order Hybrid BAM Neural Networks with Distributed Delays and Impulses," Complexity, Hindawi, vol. 2017, pages 1-13, September.
  • Handle: RePEc:hin:complx:6875874
    DOI: 10.1155/2017/6875874
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/6875874.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/6875874.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/6875874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laskin, Nick, 2000. "Fractional market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 482-492.
    2. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    3. Huang, Zai-Tang & Luo, Xiao-Shu & Yang, Qi-Gui, 2007. "Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 878-885.
    4. Ahmed, E. & Elgazzar, A.S., 2007. "On fractional order differential equations model for nonlocal epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 607-614.
    5. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2007. "Stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 514-520.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinman He & Fangqi Chen & Qinsheng Bi, 2019. "Quasi-Matrix and Quasi-Inverse-Matrix Projective Synchronization for Delayed and Disturbed Fractional Order Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    2. Grienggrai Rajchakit & Anbalagan Pratap & Ramachandran Raja & Jinde Cao & Jehad Alzabut & Chuangxia Huang, 2019. "Hybrid Control Scheme for Projective Lag Synchronization of Riemann–Liouville Sense Fractional Order Memristive BAM NeuralNetworks with Mixed Delays," Mathematics, MDPI, vol. 7(8), pages 1-23, August.
    3. Zhanying Yang & Jie Zhang, 2019. "Stability Analysis of Fractional-Order Bidirectional Associative Memory Neural Networks with Mixed Time-Varying Delays," Complexity, Hindawi, vol. 2019, pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    2. Majee, Suvankar & Jana, Soovoojeet & Das, Dhiraj Kumar & Kar, T.K., 2022. "Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. David, S.A. & Machado, J.A.T. & Quintino, D.D. & Balthazar, J.M., 2016. "Partial chaos suppression in a fractional order macroeconomic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 55-68.
    4. Shi, Jianping & He, Ke & Fang, Hui, 2022. "Chaos, Hopf bifurcation and control of a fractional-order delay financial system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 348-364.
    5. Lin, Zifei & Li, Jiaorui & Li, Shuang, 2016. "On a business cycle model with fractional derivative under narrow-band random excitation," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 61-70.
    6. Chai, Yi & Chen, Liping & Wu, Ranchao & Sun, Jian, 2012. "Adaptive pinning synchronization in fractional-order complex dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5746-5758.
    7. Fang, Qingxiang & Peng, Jigen, 2018. "Synchronization of fractional-order linear complex networks with directed coupling topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 542-553.
    8. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    9. Al-khedhairi, A. & Matouk, A.E. & Khan, I., 2019. "Chaotic dynamics and chaos control for the fractional-order geomagnetic field model," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 390-401.
    10. Li, Hong-Li & Jiang, Yao-Lin & Wang, Zuolei & Zhang, Long & Teng, Zhidong, 2015. "Global Mittag–Leffler stability of coupled system of fractional-order differential equations on network," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 269-277.
    11. Yousefpour, Amin & Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Wei, Zhouchao, 2020. "A fractional-order hyper-chaotic economic system with transient chaos," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    12. Lin, Zifei & Xu, Wei & Yue, Xiaole & Han, Qun, 2017. "Study on the effect of environmental pollution based on a fractional derivative resource depletion model," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 705-715.
    13. Yan, Ye & Kou, Chunhai, 2012. "Stability analysis for a fractional differential model of HIV infection of CD4+ T-cells with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1572-1585.
    14. Soradi-Zeid, Samaneh & Jahanshahi, Hadi & Yousefpour, Amin & Bekiros, Stelios, 2020. "King algorithm: A novel optimization approach based on variable-order fractional calculus with application in chaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    15. Ren, Jinfu & Liu, Yang & Liu, Jiming, 2023. "Chaotic behavior learning via information tracking," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    16. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    17. Wang, Lei & Chen, Yi-Ming, 2020. "Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    18. Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
    19. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    20. Fendzi Donfack, Emmanuel & Nguenang, Jean Pierre & Nana, Laurent, 2020. "On the traveling waves in nonlinear electrical transmission lines with intrinsic fractional-order using discrete tanh method," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6875874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.