IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v315y2015icp96-107.html
   My bibliography  Save this article

Transformity dynamics related to maximum power for improved emergy yield estimations

Author

Listed:
  • Tilley, David

Abstract

H.T. Odum originally defined transformity as the amount of energy of one type required to generate a unit of energy of another type with the caveat that the energy production system was operating under competition at optimum loading for maximum power. The caveat has been mostly ignored in emergy evaluations, often because it is difficult to identify when or whether a transformity was produced at maximum empower. We developed the model TechnoPulse to explore the temporally dynamic relationship between transformity and empower. As TechnoPulse cycled through four distinct phases of birth, growth, decline and recovery, maximum empower was accompanied by minimum transformity for the production flow. Conversely, the period of minimum empower corresponded to maximum transformity. After the “birth” of the new energy form, the period of growth saw empower increase as tranformity declined. Since transformity is the reciprocal of efficiency, maximizing empower also increased efficiency. We found that the non-pulsing situation had higher empower than pulsing, but that pulsing maximized power and minimized tranformity (maximized efficiency). We found that the national production of electricity in the US followed the pattern observed from the growth portion of the TechnPulse simulation by maximizing empower and minimizing transformity over the period 1995–2006. A contrast of two methods for estimating the emergy yield of systems (emergy summation based on common practices and transformity multiplication based on using minimum transformity at maximum empower) applied to PV electricity production revealed starkly different interpretations for PV’s role and viability as a primary source of electricity, but more importantly suggested that there is a easy rationale for employing each method. Finally, emergy evaluations can be improved by heeding Odum’s original definition of tranformity and using the minimum tranformity corresponding to maximum empower.

Suggested Citation

  • Tilley, David, 2015. "Transformity dynamics related to maximum power for improved emergy yield estimations," Ecological Modelling, Elsevier, vol. 315(C), pages 96-107.
  • Handle: RePEc:eee:ecomod:v:315:y:2015:i:c:p:96-107
    DOI: 10.1016/j.ecolmodel.2014.10.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014005535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.10.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Seungjun, 2014. "Resource pulses can increase power acquisition of an ecosystem," Ecological Modelling, Elsevier, vol. 271(C), pages 21-31.
    2. Ingwersen, Wesley W., 2010. "Uncertainty characterization for emergy values," Ecological Modelling, Elsevier, vol. 221(3), pages 445-452.
    3. Hudson, Amy & Tilley, David R., 2014. "Assessment of uncertainty in emergy evaluations using Monte Carlo simulations," Ecological Modelling, Elsevier, vol. 271(C), pages 52-61.
    4. Tilley, David R., 2014. "Exploration of Odum's dynamic emergy accounting rules for suggested refinements," Ecological Modelling, Elsevier, vol. 279(C), pages 36-44.
    5. Li, Linjun & Lu, Hongfang & Campbell, Daniel E. & Ren, Hai, 2011. "Methods for estimating the uncertainty in emergy table-form models," Ecological Modelling, Elsevier, vol. 222(15), pages 2615-2622.
    6. Patterson, Murray G., 2012. "Are all processes equally efficient from an emergy perspective?," Ecological Modelling, Elsevier, vol. 226(C), pages 77-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Campbell, Daniel E., 2016. "Emergy baseline for the Earth: A historical review of the science and a new calculation," Ecological Modelling, Elsevier, vol. 339(C), pages 96-125.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iribarren, Diego & Vázquez-Rowe, Ian & Rugani, Benedetto & Benetto, Enrico, 2014. "On the feasibility of using emergy analysis as a source of benchmarking criteria through data envelopment analysis: A case study for wind energy," Energy, Elsevier, vol. 67(C), pages 527-537.
    2. Agostinho, Feni & Bertaglia, Ana B.B. & Almeida, Cecília M.V.B. & Giannetti, Biagio F., 2015. "Influence of cellulase enzyme production on the energetic–environmental performance of lignocellulosic ethanol," Ecological Modelling, Elsevier, vol. 315(C), pages 46-56.
    3. Giannetti, Biagio F. & Faria, Luciana & Almeida, Cecília M.V.B. & Agostinho, Feni & Coscieme, Luca & Liu, Gengyuan, 2018. "Human-nature nexuses in Brazil: Monitoring production of economic and ecosystem services in historical series," Ecosystem Services, Elsevier, vol. 30(PB), pages 248-256.
    4. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    5. Fengjiao Ma & A. Egrinya Eneji & Jintong Liu, 2014. "Understanding Relationships among Agro-Ecosystem Services Based on Emergy Analysis in Luancheng County, North China," Sustainability, MDPI, vol. 6(12), pages 1-20, November.
    6. Marvuglia, Antonino & Benetto, Enrico & Rios, Gordon & Rugani, Benedetto, 2013. "SCALE: Software for CALculating Emergy based on life cycle inventories," Ecological Modelling, Elsevier, vol. 248(C), pages 80-91.
    7. Hudson, Amy & Tilley, David R., 2014. "Assessment of uncertainty in emergy evaluations using Monte Carlo simulations," Ecological Modelling, Elsevier, vol. 271(C), pages 52-61.
    8. Gasparatos, Alexandros, 2011. "Resource consumption in Japanese agriculture and its link to food security," Energy Policy, Elsevier, vol. 39(3), pages 1101-1112, March.
    9. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    10. Baral, Nawa Raj & Wituszynski, David M. & Martin, Jay F. & Shah, Ajay, 2016. "Sustainability assessment of cellulosic biorefinery stillage utilization methods using emergy analysis," Energy, Elsevier, vol. 109(C), pages 13-28.
    11. Li, Linjun & Lu, Hongfang & Tilley, David R. & Qiu, Guoyu, 2014. "Effect of time scale on accounting for renewable emergy in ecosystems located in humid and arid climates," Ecological Modelling, Elsevier, vol. 287(C), pages 1-8.
    12. Cristiano, S. & Ulgiati, S. & Gonella, F., 2021. "Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Gao, Wangsheng & Qin, Feng & Zhang, Jiansheng & Wu, Xia, 2014. "Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA," Agricultural Systems, Elsevier, vol. 128(C), pages 66-78.
    14. Ulgiati, Sergio & Zucaro, Amalia & Franzese, Pier Paolo, 2011. "Shared wealth or nobody's land? The worth of natural capital and ecosystem services," Ecological Economics, Elsevier, vol. 70(4), pages 778-787, February.
    15. Du, Hailong & Yang, Liu & Wang, Wenzhong & Lu, Lunhui & Li, Zhe, 2022. "Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze," Ecological Modelling, Elsevier, vol. 468(C).
    16. Amponsah, N.Y. & Le Corre, O. & Lacarriere, B., 2011. "Recycling flows in emergy evaluation: A mathematical paradox?," Ecological Modelling, Elsevier, vol. 222(17), pages 3071-3081.
    17. Lu, Hongfang & Lin, Bin-Le & Campbell, Daniel E. & Wang, Yanjia & Duan, Wenqi & Han, Taotao & Wang, Jun & Ren, Hai, 2022. "Australia-Japan telecoupling of wind power-based green ammonia for passenger transportation: Efficiency, impacts, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Patterson, Murray, 2014. "Evaluation of matrix algebra methods for calculating transformities from ecological and economic network data," Ecological Modelling, Elsevier, vol. 271(C), pages 72-82.
    19. Li, Linjun & Lu, Hongfang & Campbell, Daniel E. & Ren, Hai, 2011. "Methods for estimating the uncertainty in emergy table-form models," Ecological Modelling, Elsevier, vol. 222(15), pages 2615-2622.
    20. Oleksandr Galychyn & B.D. Fath & D. Wiedenhofer & E. Buonocore & P.P. Franzese, 2024. "An urban emergy footprint: Comparing supply- and use-extended input-output models for the case of Vienna, Austria," Post-Print hal-04507173, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:315:y:2015:i:c:p:96-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.