IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v271y2014icp21-31.html
   My bibliography  Save this article

Resource pulses can increase power acquisition of an ecosystem

Author

Listed:
  • Lee, Seungjun

Abstract

Pulsing is prevalent in nature. As resource pulse has been recognized as one of the major factors influencing ecosystem structures and processes, it is important to investigate why nature pulses and what benefits an ecosystem obtains from pulsed resources. The main question of this study was that if a system could be exposed to either constant external resources or pulsed external resources of the same temporal average intensity, which resources would maximize power acquisition of a system. To answer the question, this study tested how matching of pulsed resources affects total empower acquisition of a system using numerical simulation models and a refined dynamic emergy accounting method. A producer–consumer model system was built and simulated by varying phases and frequencies of pulsed energy sources. It was hypothesized that matching of frequency and phase among two or more pulsed energy sources increases the empower acquisition of a system, compared with a system under constant energy sources. The simulation results showed that in systems of two energy sources, matching phases and frequencies of the pulsed energy sources involved in primary production is critical to increase total empower acquisition and consumer energy storage. The primary mechanism was that the matching of pulsed resources in phase and frequency promotes energy acquisition of primary producers that is further efficiently transferred for the production of consumers. Energy acquisition of consumers was strongly correlated with total empower acquisition of the system presumably because the consumers are in the high energy hierarchical position controlling the producers thus contributing to the total empower acquisition through the system.

Suggested Citation

  • Lee, Seungjun, 2014. "Resource pulses can increase power acquisition of an ecosystem," Ecological Modelling, Elsevier, vol. 271(C), pages 21-31.
  • Handle: RePEc:eee:ecomod:v:271:y:2014:i:c:p:21-31
    DOI: 10.1016/j.ecolmodel.2012.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012005662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.11.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tilley, David, 2015. "Transformity dynamics related to maximum power for improved emergy yield estimations," Ecological Modelling, Elsevier, vol. 315(C), pages 96-107.
    2. Jørgensen, Sven E. & Nielsen, Søren Nors & Fath, Brian D., 2016. "Recent progress in systems ecology," Ecological Modelling, Elsevier, vol. 319(C), pages 112-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    2. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    3. Shoaib Azizi & Gireesh Nair & Thomas Olofsson, 2020. "Adoption of Energy Efficiency Measures in Renovation of Single-Family Houses: A Comparative Approach," Energies, MDPI, vol. 13(22), pages 1-16, November.
    4. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238007, International Telecommunications Society (ITS).
    5. Oliveira, Cíntia Carla Melgaço de & Brittes, José Luiz Pereira & Silveira Junior, Vivaldo, 2019. "Dynamic operating conditions strategy for water hybrid cooling under variable heating demand," Applied Energy, Elsevier, vol. 237(C), pages 635-645.
    6. Wenxuan Ma, 2022. "Exploring the Role of Educational Human Capital and Green Finance in Total-Factor Energy Efficiency in the Context of Sustainable Development," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    7. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    8. Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
    9. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
    10. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    11. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    12. Velasco-Fernández, Raúl & Dunlop, Tessa & Giampietro, Mario, 2020. "Fallacies of energy efficiency indicators: Recognizing the complexity of the metabolic pattern of the economy," Energy Policy, Elsevier, vol. 137(C).
    13. Bernard, Jean-Thomas & Idoudi, Nadhem, 2003. "Demande d’énergie et changement de l’intensité énergétique du secteur manufacturier québécois de 1990 à 1998," L'Actualité Economique, Société Canadienne de Science Economique, vol. 79(4), pages 503-521, Décembre.
    14. Norman, Jonathan B., 2017. "Measuring improvements in industrial energy efficiency: A decomposition analysis applied to the UK," Energy, Elsevier, vol. 137(C), pages 1144-1151.
    15. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    16. Aviel Verbruggen, 2011. "A Turbo Drive for the Global Reduction of Energy-Related CO 2 Emissions," Sustainability, MDPI, vol. 3(4), pages 1-17, April.
    17. Emmanouil Tziolas & Eleftherios Karapatzak & Ioannis Kalathas & Chris Lytridis & Spyridon Mamalis & Stefanos Koundouras & Theodore Pachidis & Vassilis G. Kaburlasos, 2023. "Comparative Assessment of Environmental/Energy Performance under Conventional Labor and Collaborative Robot Scenarios in Greek Viticulture," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
    18. Honma, Satoshi & Hu, Jin-Li, 2009. "Total-factor energy productivity growth of regions in Japan," Energy Policy, Elsevier, vol. 37(10), pages 3941-3950, October.
    19. Du, Kerui & Liu, Xueyue & Zhao, Cheng, 2023. "Environmental regulation mitigates energy rebound effect," Energy Economics, Elsevier, vol. 125(C).
    20. Subrahmanya, M.H. Bala, 2006. "Energy intensity and economic performance in small scale bricks and foundry clusters in India: does energy intensity matter?," Energy Policy, Elsevier, vol. 34(4), pages 489-497, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:271:y:2014:i:c:p:21-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.