IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v290y2014icp192-203.html
   My bibliography  Save this article

Direct and apparent compensation in plant–herbivore interactions

Author

Listed:
  • Lebon, A.
  • Mailleret, L.
  • Dumont, Y.
  • Grognard, F.

Abstract

The potential positive effects of herbivores on plants have been the subject of debates for decades. While traditionally, herbivory was considered to have a negative impact on plants, some studies also reported possible mutualism between plants and herbivores. Plant defences, and in particular tolerance and resistance, seem to play an important role in shaping plant–herbivore interactions. The aim of this study is to show how a direct plant compensation mechanism translates into apparent compensation, i.e. the long-term biomass response to herbivory, in simple plant–herbivore models. A special emphasis is then put on how it interacts with resistance mechanisms. A qualitative study of the proposed models shows that they can exhibit different plant–herbivore patterns, including neutral, antagonistic (negative apparent compensation) and mutualistic (positive apparent compensation) interactions. Moreover, it is shown that density dependence plays a crucial role since, for a given system, the realized plant–herbivore pattern critically depends on the initial plant and herbivore levels. Our study shows the importance of direct compensation for the presence of plant–herbivore mutualism, a finding which we show, has significant implications both in ecosystems ecology and in agricultural pest management.

Suggested Citation

  • Lebon, A. & Mailleret, L. & Dumont, Y. & Grognard, F., 2014. "Direct and apparent compensation in plant–herbivore interactions," Ecological Modelling, Elsevier, vol. 290(C), pages 192-203.
  • Handle: RePEc:eee:ecomod:v:290:y:2014:i:c:p:192-203
    DOI: 10.1016/j.ecolmodel.2014.02.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014001148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.02.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryrie, Susan C. & Prentice, I. Colin, 2011. "Herbivores enable plant survival under nutrient limited conditions in a model grazing system," Ecological Modelling, Elsevier, vol. 222(3), pages 381-397.
    2. Peter B. Reich & Mark G. Tjoelker & Jose-Luis Machado & Jacek Oleksyn, 2006. "Universal scaling of respiratory metabolism, size and nitrogen in plants," Nature, Nature, vol. 439(7075), pages 457-461, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mendy, A. & Tewa, J.J. & Lam, M. & Tchinda Mouofo, P., 2019. "Hopf bifurcation in a grazing system with two delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 90-129.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    2. Calistus N Ngonghala & Mateusz M Pluciński & Megan B Murray & Paul E Farmer & Christopher B Barrett & Donald C Keenan & Matthew H Bonds, 2014. "Poverty, Disease, and the Ecology of Complex Systems," PLOS Biology, Public Library of Science, vol. 12(4), pages 1-9, April.
    3. Łukasz Radosz & Damian Chmura & Dariusz Prostański & Gabriela Woźniak, 2023. "The Soil Respiration of Coal Mine Heaps’ Novel Ecosystems in Relation to Biomass and Biotic Parameters," Energies, MDPI, vol. 16(20), pages 1-24, October.
    4. Gavrikov, Vladimir L., 2015. "Whether respiration in trees can scale isometrically with bole surface area: A test of hypothesis," Ecological Modelling, Elsevier, vol. 312(C), pages 318-321.
    5. Karolina Ryś & Damian Chmura & Dariusz Prostański & Gabriela Woźniak, 2023. "Biomass Amounts of Spontaneous Vegetation on Post-Coal Mine Novel Ecosystem in Relation to Biotic Parameters," Energies, MDPI, vol. 16(22), pages 1-30, November.
    6. Fu, Lintao & Bo, Tianli & Du, Guozhen & Zheng, Xiaojing, 2012. "Modeling the responses of grassland vegetation coverage to grazing disturbance in an alpine meadow," Ecological Modelling, Elsevier, vol. 247(C), pages 221-232.
    7. Guanghua Jing & Tianming Hu & Jian Liu & Jimin Cheng & Wei Li, 2020. "Biomass Estimation, Nutrient Accumulation, and Stoichiometric Characteristics of Dominant Tree Species in the Semi-Arid Region on the Loess Plateau of China," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    8. Rodríguez, Ricardo A. & Herrera, Ada M. & Riera, Rodrigo & Santander, Jacobo & Miranda, Jezahel V. & Quirós, Ángel & Fernández-Rodríguez, María J. & Fernández-Palacios, José M. & Otto, Rüdiger & Escud, 2015. "Distribution of species diversity values: A link between classical and quantum mechanics in ecology," Ecological Modelling, Elsevier, vol. 313(C), pages 162-180.
    9. Vincent Maire & Nicolas Gross & David Hill & Raphaël Martin & Christian Wirth & Ian J Wright & Jean-François Soussana, 2013. "Disentangling Coordination among Functional Traits Using an Individual-Centred Model: Impact on Plant Performance at Intra- and Inter-Specific Levels," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    10. Peng Wu & Hua Zhou & Yingchun Cui & Wenjun Zhao & Yiju Hou & Chengjiang Tan & Guangneng Yang & Fangjun Ding, 2022. "Stoichiometric Characteristics of Leaf, Litter and Soil during Vegetation Succession in Maolan National Nature Reserve, Guizhou, China," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    11. Chen, Yanguang & Wang, Yihan & Li, Xijing, 2019. "Fractal dimensions derived from spatial allometric scaling of urban form," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 122-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:290:y:2014:i:c:p:192-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.