IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v286y2014icp1-10.html
   My bibliography  Save this article

CoSMo: A simple approach for reproducing plant community dynamics using a single instance of generic crop simulators

Author

Listed:
  • Confalonieri, R.

Abstract

Grassland productivity can be estimated using individual-centred models or via crop simulators parameterized to mimic average morphological and physiological features of the phytocoenosis as a whole. Although the latter is often considered an oversimplified solution, individual-centred models are characterized by a degree of complexity that often restricts their use to scientists specialized in pastures modelling or in crop-weed interaction. In this study, an intermediate solution is presented (CoSMo), based on two assumptions allowing the use of a single instance of a generic crop model to simulate phytocoenosis dynamics and productivity. The first is that community parameters can be derived at each time step from the relative presence of the different species and from parameter values determined for the species in monoculture. The second is that inter-specific competition and changes in species relative presence can be simulated as a function of species-specific responses to hierarchically arranged drivers (triggered and continuous) representing the suitability of the different species to the conditions explored at each time step. CoSMo was here analyzed by means of three simulation experiments, where changes in the relative presence of three species with different traits and the productivity of the community were simulated under current conditions and future climate projections. Results encourage further studies, given that the solution proposed is easy to implement and parameterize, and leaves users free to work with the generic crop simulator they are familiar with. These features make CoSMo suitable for being coupled – within integrated studies – to models developed for other domains by scientists not specialist in the ecophysiological aspects involved with inter-specific competition. However, this approach cannot be considered as an alternative to individual-centred models in case of in silico studies explicitly focusing on the relationships between inter-specific competition and species traits and phenotypic plasticity.

Suggested Citation

  • Confalonieri, R., 2014. "CoSMo: A simple approach for reproducing plant community dynamics using a single instance of generic crop simulators," Ecological Modelling, Elsevier, vol. 286(C), pages 1-10.
  • Handle: RePEc:eee:ecomod:v:286:y:2014:i:c:p:1-10
    DOI: 10.1016/j.ecolmodel.2014.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014002002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Munier-Jolain, N.M. & Guyot, S.H.M. & Colbach, N., 2013. "A 3D model for light interception in heterogeneous crop:weed canopies: Model structure and evaluation," Ecological Modelling, Elsevier, vol. 250(C), pages 101-110.
    2. Baumann, D. T. & Bastiaans, L. & Goudriaan, J. & van Laar, H. H. & Kropff, M. J., 2002. "Analysing crop yield and plant quality in an intercropping system using an eco-physiological model for interplant competition," Agricultural Systems, Elsevier, vol. 73(2), pages 173-203, August.
    3. Maire, Vincent & Soussana, Jean-François & Gross, Nicolas & Bachelet, Bruno & Pagès, Loïc & Martin, Raphaël & Reinhold, Tanja & Wirth, Christian & Hill, David, 2013. "Plasticity of plant form and function sustains productivity and dominance along environment and competition gradients. A modeling experiment with Gemini," Ecological Modelling, Elsevier, vol. 254(C), pages 80-91.
    4. Confalonieri, R. & Bregaglio, S. & Acutis, M., 2012. "Quantifying plasticity in simulation models," Ecological Modelling, Elsevier, vol. 225(C), pages 159-166.
    5. Vincent Maire & Nicolas Gross & David Hill & Raphaël Martin & Christian Wirth & Ian J Wright & Jean-François Soussana, 2013. "Disentangling Coordination among Functional Traits Using an Individual-Centred Model: Impact on Plant Performance at Intra- and Inter-Specific Levels," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    6. Confalonieri, R. & Bregaglio, S. & Acutis, M., 2010. "A proposal of an indicator for quantifying model robustness based on the relationship between variability of errors and of explored conditions," Ecological Modelling, Elsevier, vol. 221(6), pages 960-964.
    7. Lazzarotto, P. & Calanca, P. & Fuhrer, J., 2009. "Dynamics of grass–clover mixtures—An analysis of the response to management with the PROductive GRASsland Simulator (PROGRASS)," Ecological Modelling, Elsevier, vol. 220(5), pages 703-724.
    8. Soussana, Jean-François & Maire, Vincent & Gross, Nicolas & Bachelet, Bruno & Pagès, Loic & Martin, Raphaël & Hill, David & Wirth, Christian, 2012. "Gemini: A grassland model simulating the role of plant traits for community dynamics and ecosystem functioning. Parameterization and evaluation," Ecological Modelling, Elsevier, vol. 231(C), pages 134-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moulin, Thibault & Perasso, Antoine & Gillet, François, 2018. "Modelling vegetation dynamics in managed grasslands: Responses to drivers depend on species richness," Ecological Modelling, Elsevier, vol. 374(C), pages 22-36.
    2. Morgese, S. & Casale, F. & Movedi, E. & Confalonieri, R. & Bocchiola, D., 2024. "Modelling the effects of potential climate change on the dynamics of multi-species mountain pastures: A case study in Gran Paradiso National Park, Italy," Agricultural Systems, Elsevier, vol. 217(C).
    3. Movedi, Ermes & Valiante, Daniele & Colosio, Alessandro & Corengia, Luca & Cossa, Stefano & Confalonieri, Roberto, 2022. "A new approach for modeling crop-weed interaction targeting management support in operational contexts: A case study on the rice weeds barnyardgrass and red rice," Ecological Modelling, Elsevier, vol. 463(C).
    4. Moulin, Thibault & Perasso, Antoine & Calanca, Pierluigi & Gillet, François, 2021. "DynaGraM: A process-based model to simulate multi-species plant community dynamics in managed grasslands," Ecological Modelling, Elsevier, vol. 439(C).
    5. Movedi, Ermes & Bellocchi, Gianni & Argenti, Giovanni & Paleari, Livia & Vesely, Fosco & Staglianò, Nicolina & Dibari, Camilla & Confalonieri, Roberto, 2019. "Development of generic crop models for simulation of multi-species plant communities in mown grasslands," Ecological Modelling, Elsevier, vol. 401(C), pages 111-128.
    6. Movedi, Ermes & Paleari, Livia & Argenti, Giovanni & Vesely, Fosco M. & Staglianò, Nicolina & Parrini, Silvia & Confalonieri, Roberto, 2024. "The application of a plant community model to evaluate adaptation strategies for alleviating climate change impacts on grassland productivity, biodiversity and forage quality," Ecological Modelling, Elsevier, vol. 488(C).
    7. Kipling, Richard P. & Bannink, André & Bellocchi, Gianni & Dalgaard, Tommy & Fox, Naomi J. & Hutchings, Nicholas J. & Kjeldsen, Chris & Lacetera, Nicola & Sinabell, Franz & Topp, Cairistiona F.E. & va, 2016. "Modeling European ruminant production systems: Facing the challenges of climate change," Agricultural Systems, Elsevier, vol. 147(C), pages 24-37.
    8. Wirth, Stephen Björn & Taubert, Franziska & Tietjen, Britta & Müller, Christoph & Rolinski, Susanne, 2021. "Do details matter? Disentangling the processes related to plant species interactions in two grassland models of different complexity," Ecological Modelling, Elsevier, vol. 460(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kipling, Richard P. & Bannink, André & Bellocchi, Gianni & Dalgaard, Tommy & Fox, Naomi J. & Hutchings, Nicholas J. & Kjeldsen, Chris & Lacetera, Nicola & Sinabell, Franz & Topp, Cairistiona F.E. & va, 2016. "Modeling European ruminant production systems: Facing the challenges of climate change," Agricultural Systems, Elsevier, vol. 147(C), pages 24-37.
    2. Movedi, Ermes & Bellocchi, Gianni & Argenti, Giovanni & Paleari, Livia & Vesely, Fosco & Staglianò, Nicolina & Dibari, Camilla & Confalonieri, Roberto, 2019. "Development of generic crop models for simulation of multi-species plant communities in mown grasslands," Ecological Modelling, Elsevier, vol. 401(C), pages 111-128.
    3. Moulin, Thibault & Perasso, Antoine & Gillet, François, 2018. "Modelling vegetation dynamics in managed grasslands: Responses to drivers depend on species richness," Ecological Modelling, Elsevier, vol. 374(C), pages 22-36.
    4. Ben Touhami, Haythem & Lardy, Romain & Barra, Vincent & Bellocchi, Gianni, 2013. "Screening parameters in the Pasture Simulation model using the Morris method," Ecological Modelling, Elsevier, vol. 266(C), pages 42-57.
    5. Oomen, Roelof J. & Ewert, Frank & Snyman, Hennie A., 2016. "Modelling rangeland productivity in response to degradation in a semi-arid climate," Ecological Modelling, Elsevier, vol. 322(C), pages 54-70.
    6. Moulin, Thibault & Perasso, Antoine & Calanca, Pierluigi & Gillet, François, 2021. "DynaGraM: A process-based model to simulate multi-species plant community dynamics in managed grasslands," Ecological Modelling, Elsevier, vol. 439(C).
    7. Pointurier, Olivia & Moreau, Delphine & Pagès, Loïc & Caneill, Jacques & Colbach, Nathalie, 2021. "Individual-based 3D modelling of root systems in heterogeneous plant canopies at the multiannual scale. Case study with a weed dynamics model," Ecological Modelling, Elsevier, vol. 440(C).
    8. Vincent Maire & Nicolas Gross & David Hill & Raphaël Martin & Christian Wirth & Ian J Wright & Jean-François Soussana, 2013. "Disentangling Coordination among Functional Traits Using an Individual-Centred Model: Impact on Plant Performance at Intra- and Inter-Specific Levels," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    9. Chéné, Yann & Belin, Étienne & Rousseau, David & Chapeau-Blondeau, François, 2013. "Multiscale analysis of depth images from natural scenes: Scaling in the depth of the woods," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 135-149.
    10. Paleari, Livia & Confalonieri, Roberto, 2016. "Sensitivity analysis of a sensitivity analysis: We are likely overlooking the impact of distributional assumptions," Ecological Modelling, Elsevier, vol. 340(C), pages 57-63.
    11. Annett Wolf & Patrick Lazzarotto & Harald Bugmann, 2012. "The relative importance of land use and climatic change in Alpine catchments," Climatic Change, Springer, vol. 111(2), pages 279-300, March.
    12. Laughlin, Daniel C. & Joshi, Chaitanya, 2015. "Theoretical consequences of trait-based environmental filtering for the breadth and shape of the niche: New testable hypotheses generated by the Traitspace model," Ecological Modelling, Elsevier, vol. 307(C), pages 10-21.
    13. Lieffering, Mark & Newton, Paul C.D. & Vibart, Ronaldo & Li, Frank Y., 2016. "Exploring climate change impacts and adaptations of extensive pastoral agriculture systems by combining biophysical simulation and farm system models," Agricultural Systems, Elsevier, vol. 144(C), pages 77-86.
    14. Herben, Tomáš & Wildová, Radka, 2012. "Community-level effects of plant traits in a grassland community examined by multispecies model of clonal plant growth," Ecological Modelling, Elsevier, vol. 234(C), pages 60-69.
    15. Queyrel, Wilfried & Van Inghelandt, Bastien & Colas, Floriane & Cavan, Nicolas & Granger, Sylvie & Guyot, Bérénice & Reau, Raymond & Derrouch, Damien & Chauvel, Bruno & Maillot, Thibault & Colbach, Na, 2023. "Combining expert knowledge and models in participatory workshops with farmers to design sustainable weed management strategies," Agricultural Systems, Elsevier, vol. 208(C).
    16. Franziska Taubert & Jessica Hetzer & Julia Sabine Schmid & Andreas Huth, 2020. "Confronting an individual-based simulation model with empirical community patterns of grasslands," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-19, July.
    17. Colas, Floriane & Gauchi, Jean-Pierre & Villerd, Jean & Colbach, Nathalie, 2021. "Simplifying a complex computer model: Sensitivity analysis and metamodelling of an 3D individual-based crop-weed canopy model," Ecological Modelling, Elsevier, vol. 454(C).
    18. Rodolfo Gustavo Teixeira Ribas & Arthur Bernardes Cecílio Filho & Alexson Filgueiras Dutra & José Carlos Barbosa & Glauco de Souza Rolim, 2020. "Land Equivalent Ratio in the Intercropping of Cucumber with Lettuce as a Function of Cucumber Population Density," Agriculture, MDPI, vol. 10(3), pages 1-13, March.
    19. Francis Okot & Mark Laing & Hussein Shimelis & Walter A. J. de Milliano, 2022. "Diagnostic Appraisal of the Sorghum Farming System and Breeding Priorities in Sierra Leone," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    20. Tadiello, Tommaso & Gabbrielli, Mara & Botta, Marco & Acutis, Marco & Bechini, Luca & Ragaglini, Giorgio & Fiorini, Andrea & Tabaglio, Vincenzo & Perego, Alessia, 2023. "A new module to simulate surface crop residue decomposition: Description and sensitivity analysis," Ecological Modelling, Elsevier, vol. 480(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:286:y:2014:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.