IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v307y2015icp10-21.html
   My bibliography  Save this article

Theoretical consequences of trait-based environmental filtering for the breadth and shape of the niche: New testable hypotheses generated by the Traitspace model

Author

Listed:
  • Laughlin, Daniel C.
  • Joshi, Chaitanya

Abstract

Every species on Earth fills a unique environmental niche that is driven, in part, by the process of environmental filtering, where the adaptive value of the functional traits of individuals determine their fitness within the given environmental conditions. Despite its long-standing importance in ecology, theoretical investigations of environmental filtering have lagged behind studies of species interactions and neutral dynamics. A new statistical model of trait-based environmental filtering can be a useful tool for exploring the logical consequences of this process while holding all other processes constant. The model uses the logic of objective Bayesian inference to compute the probabilities of species within different environments using two sources of information: the location and dispersion of species within functional trait space, and the statistical relationship between traits and environmental gradients. By varying key parameters in the model, we highlight several testable hypotheses for trait-based ecology. First, niche breadth decreases as intraspecific trait variation decreases, as the strength of the environmental filter increases, and if the trait values do not enhance fitness in any environmental condition in the landscape. Second, niche shape is determined by the form of the trait–environment relationships, where species with extreme trait values are predicted to dominate at the environmental extremes when traits are linearly related to the environment, species with intermediate trait values generally have a selective advantage across a broader environmental range, and bimodal species response curves can occur independently from negative species interactions. The generality of these modelling results can be tested using empirical data from any ecosystem.

Suggested Citation

  • Laughlin, Daniel C. & Joshi, Chaitanya, 2015. "Theoretical consequences of trait-based environmental filtering for the breadth and shape of the niche: New testable hypotheses generated by the Traitspace model," Ecological Modelling, Elsevier, vol. 307(C), pages 10-21.
  • Handle: RePEc:eee:ecomod:v:307:y:2015:i:c:p:10-21
    DOI: 10.1016/j.ecolmodel.2015.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015001246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vincent Maire & Nicolas Gross & David Hill & Raphaël Martin & Christian Wirth & Ian J Wright & Jean-François Soussana, 2013. "Disentangling Coordination among Functional Traits Using an Individual-Centred Model: Impact on Plant Performance at Intra- and Inter-Specific Levels," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malanson, George P. & DeRose, R. Justin & Bekker, Matthew F., 2019. "Individual variation and ecotypic niches in simulations of the impact of climatic volatility," Ecological Modelling, Elsevier, vol. 411(C).
    2. Zakharova, L. & Meyer, K.M. & Seifan, M., 2019. "Trait-based modelling in ecology: A review of two decades of research," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Movedi, Ermes & Bellocchi, Gianni & Argenti, Giovanni & Paleari, Livia & Vesely, Fosco & Staglianò, Nicolina & Dibari, Camilla & Confalonieri, Roberto, 2019. "Development of generic crop models for simulation of multi-species plant communities in mown grasslands," Ecological Modelling, Elsevier, vol. 401(C), pages 111-128.
    2. Confalonieri, R., 2014. "CoSMo: A simple approach for reproducing plant community dynamics using a single instance of generic crop simulators," Ecological Modelling, Elsevier, vol. 286(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:307:y:2015:i:c:p:10-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.