IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v276y2014icp64-79.html
   My bibliography  Save this article

Effects of biomass changes in the supply–demand balance of energy in aquatic food webs

Author

Listed:
  • Salcido-Guevara, Luis A.
  • Arreguín-Sánchez, Francisco

Abstract

Due to the complex interactions between the community and its environment, understanding the behaviour of ecosystems is a difficult and laborious task. In this paper, we study several aspects of the ecosystem characterised by food webs and how their energy balance is affected by changes in biomass and the availability of resources required for self-maintenance. Ecosystem behaviour, as expressed through the energy flows between compartments, and the respiration flows and biomass of 124 trophic models are analysed. The metabolism of food webs is characterised by measuring respiration flows and scaling biomass to the 3/4 power. On the basis of this scaling, 16 food webs were selected to make a comparative analysis of the system dynamics, assuming that metabolism, relative to the size and independence of the environment, is the main source of change in the supply–demand balance of energy. The results demonstrate the importance of variation in the biomass of primary producers for the availability of resources in the system, which is related to bottom-up control, whereas a decrease in the supply of resources by top predators is associated with top-down control.

Suggested Citation

  • Salcido-Guevara, Luis A. & Arreguín-Sánchez, Francisco, 2014. "Effects of biomass changes in the supply–demand balance of energy in aquatic food webs," Ecological Modelling, Elsevier, vol. 276(C), pages 64-79.
  • Handle: RePEc:eee:ecomod:v:276:y:2014:i:c:p:64-79
    DOI: 10.1016/j.ecolmodel.2014.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014000428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christensen, V. & Pauly, D. (eds.), 1993. "Trophic models of aquatic ecosystems," Monographs, The WorldFish Center, number 8432, April.
    2. Ulanowicz, Robert E., 2009. "The dual nature of ecosystem dynamics," Ecological Modelling, Elsevier, vol. 220(16), pages 1886-1892.
    3. Angelini, R. & Petrere, M., Jr., 1996. "The ecosystem of Broa reservoir, Sao Paulo State, Brazil, as described using ECOPATH," Naga, The WorldFish Center, vol. 19(2), pages 36-41.
    4. Garces, L.R. & Man, A. & Ahmad, A.T. & Mohamad-Norizam, M. & Slivestre, G.T., 2003. "A trophic model of the coastal fisheries ecosystem off the west coast of Sabah and Sarawak, Malaysia," Monographs, The WorldFish Center, number 37742, April.
    5. Jayanth R. Banavar & Amos Maritan & Andrea Rinaldo, 1999. "Size and form in efficient transportation networks," Nature, Nature, vol. 399(6732), pages 130-132, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walters, Carl & Christensen, Villy & Fulton, Beth & Smith, Anthony D.M. & Hilborn, Ray, 2016. "Predictions from simple predator-prey theory about impacts of harvesting forage fishes," Ecological Modelling, Elsevier, vol. 337(C), pages 272-280.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ullah, Md. Hadayet & Rashed-Un-Nabi, Md. & Al-Mamun, Md. Abdulla, 2012. "Trophic model of the coastal ecosystem of the Bay of Bengal using mass balance Ecopath model," Ecological Modelling, Elsevier, vol. 225(C), pages 82-94.
    2. Milessi, Andrés C. & Danilo, Calliari & Laura, Rodríguez-Graña & Daniel, Conde & Javier, Sellanes & Rodríguez-Gallego, Lorena, 2010. "Trophic mass-balance model of a subtropical coastal lagoon, including a comparison with a stable isotope analysis of the food-web," Ecological Modelling, Elsevier, vol. 221(24), pages 2859-2869.
    3. Elliott, Robert J.R. & Sun, Puyang & Xu, Qiqin, 2015. "Energy distribution and economic growth: An empirical test for China," Energy Economics, Elsevier, vol. 48(C), pages 24-31.
    4. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    5. Moreau, J. & Palomares, M.L.D. & Torres, F.S.B., Jr. & Pauly, D., 1995. "Atlas demographique des populations de poissons d'eau douce d'Afrique," Monographs, The WorldFish Center, number 10441, April.
    6. Jia, Peiqiao & Hu, Menghong & Hu, Zhongjun & Liu, Qigen & Wu, Zhen, 2012. "Modeling trophic structure and energy flows in a typical macrophyte dominated shallow lake using the mass balanced model," Ecological Modelling, Elsevier, vol. 233(C), pages 26-30.
    7. Booth, Shawn & Walters, William J & Steenbeek, Jeroen & Christensen, Villy & Charmasson, Sabine, 2020. "An Ecopath with Ecosim model for the Pacific coast of eastern Japan: Describing the marine environment and its fisheries prior to the Great East Japan earthquake," Ecological Modelling, Elsevier, vol. 428(C).
    8. Tang, Qianyong & Li, Huajiao & Qi, Yajie & Li, Yang & Liu, Haiping & Wang, Xingxing, 2023. "The reliability of the trade dependence network in the tungsten industry chain based on percolation," Resources Policy, Elsevier, vol. 82(C).
    9. Wang, Cheng-Jun & Wu, Lingfei, 2016. "The scaling of attention networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 196-204.
    10. Díaz López, Bruno & Bunke, Mandy & Bernal Shirai, Julia Andrea, 2008. "Marine aquaculture off Sardinia Island (Italy): Ecosystem effects evaluated through a trophic mass-balance model," Ecological Modelling, Elsevier, vol. 212(3), pages 292-303.
    11. Rochette, S. & Lobry, J. & Lepage, M. & Boët, Ph., 2009. "Dealing with uncertainty in qualitative models with a semi-quantitative approach based on simulations. Application to the Gironde estuarine food web (France)," Ecological Modelling, Elsevier, vol. 220(2), pages 122-132.
    12. Hennessy, David A., 2006. "Feeding and the Equilibrium Feeder Animal Price-Weight Schedule," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(2), pages 1-23, August.
    13. Christensen, Villy & de la Puente, Santiago & Sueiro, Juan Carlos & Steenbeek, Jeroen & Majluf, Patricia, 2014. "Valuing seafood: The Peruvian fisheries sector," Marine Policy, Elsevier, vol. 44(C), pages 302-311.
    14. He, Xuan & Zhao, Hai & Cai, Wei & Liu, Zheng & Si, Shuai-Zong, 2014. "Earthquake networks based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 175-184.
    15. Ivanova, Inga & Strand, Øivind & Kushnir, Duncan & Leydesdorff, Loet, 2017. "Economic and technological complexity: A model study of indicators of knowledge-based innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 77-89.
    16. Lia Papadopoulos & Pablo Blinder & Henrik Ronellenfitsch & Florian Klimm & Eleni Katifori & David Kleinfeld & Danielle S Bassett, 2018. "Comparing two classes of biological distribution systems using network analysis," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-31, September.
    17. Loet Leydesdorff, 2015. "Can intellectual processes in the sciences also be simulated? The anticipation and visualization of possible future states," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2197-2214, December.
    18. Carey W. King, 2016. "Information Theory to Assess Relations Between Energy and Structure of the U.S. Economy Over Time," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-33, December.
    19. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    20. Inga A. Ivanova & Loet Leydesdorff, 2014. "A simulation model of the Triple Helix of university–industry–government relations and the decomposition of the redundancy," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 927-948, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:276:y:2014:i:c:p:64-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.