IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v448y2016icp196-204.html
   My bibliography  Save this article

The scaling of attention networks

Author

Listed:
  • Wang, Cheng-Jun
  • Wu, Lingfei

Abstract

We use clicks as a proxy of collective attention and construct networks to study the temporal dynamics of attention. In particular we collect the browsing records of millions of users on 1000 Web forums in two months. In the constructed networks, nodes are threads and edges represent the switch of users between threads in an hour. The investigated network properties include the number of threads N, the number of users UV, and the number of clicks, PV. We find scaling functions PV∼UVθ1, PV∼Nθ3, and UV∼Nθ2, in which the scaling exponents are always greater than 1. This means that (1) the studied networks maintain a self-similar flow structure in time, i.e., large networks are simply the scale-up versions of small networks; and (2) large networks are more “productive”, in the sense that an average user would generate more clicks in the larger systems. We propose a revised version of Zipf’s law to quantify the time-invariant flow structure of attention networks and relate it to the observed scaling properties. We also demonstrate the applied consequences of our research: forum-classification based on scaling properties.

Suggested Citation

  • Wang, Cheng-Jun & Wu, Lingfei, 2016. "The scaling of attention networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 196-204.
  • Handle: RePEc:eee:phsmap:v:448:y:2016:i:c:p:196-204
    DOI: 10.1016/j.physa.2015.12.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115011097
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Eeckhout, 2004. "Gibrat's Law for (All) Cities," American Economic Review, American Economic Association, vol. 94(5), pages 1429-1451, December.
    2. L. Wu, 2011. "The accelerating growth of online tagging systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 83(2), pages 283-287, September.
    3. Jiang Zhang & Lingfei Wu, 2013. "Allometry and Dissipation of Ecological Flow Networks," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    4. Blank, Aharon & Solomon, Sorin, 2000. "Power laws in cities population, financial markets and internet sites (scaling in systems with a variable number of components)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(1), pages 279-288.
    5. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1997. "A General Model for the Origin of Allometric Scaling Laws in Biology," Working Papers 97-03-019, Santa Fe Institute.
    6. Jayanth R. Banavar & Amos Maritan & Andrea Rinaldo, 1999. "Size and form in efficient transportation networks," Nature, Nature, vol. 399(6732), pages 130-132, May.
    7. Lingfei Wu & Jiang Zhang & Min Zhao, 2014. "The Metabolism and Growth of Web Forums," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    8. Kazutoshi Sasahara & Yoshito Hirata & Masashi Toyoda & Masaru Kitsuregawa & Kazuyuki Aihara, 2013. "Quantifying Collective Attention from Tweet Stream," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    9. Albert-László Barabási, 2005. "The origin of bursts and heavy tails in human dynamics," Nature, Nature, vol. 435(7039), pages 207-211, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haochuan Cui & Tiewei Li & Cheng-Jun Wang, 2023. "Climbing up the ladder of abstraction: how to span the boundaries of knowledge space in the online knowledge market?," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    2. Zhang, Yaotian & Feng, Mingming & Shang, Ke-ke & Ran, Yijun & Wang, Cheng-Jun, 2022. "Peeking strategy for online news diffusion prediction via machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenpeng Li & Luo Li, 2023. "The Generation Mechanism of Degree Distribution with Power Exponent >2 and the Growth of Edges in Temporal Social Networks," Mathematics, MDPI, vol. 11(13), pages 1-11, June.
    2. Peiteng Shi & Jiang Zhang & Bo Yang & Jingfei Luo, 2014. "Hierarchicality of Trade Flow Networks Reveals Complexity of Products," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    3. Elliott, Robert J.R. & Sun, Puyang & Xu, Qiqin, 2015. "Energy distribution and economic growth: An empirical test for China," Energy Economics, Elsevier, vol. 48(C), pages 24-31.
    4. Segarra, Agustí & Teruel, Mercedes, 2012. "An appraisal of firm size distribution: Does sample size matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 82(1), pages 314-328.
    5. Esteban Rossi-Hansberg & Mark L. J. Wright, 2007. "Urban Structure and Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(2), pages 597-624.
    6. Hennessy, David A., 2006. "Feeding and the Equilibrium Feeder Animal Price-Weight Schedule," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(2), pages 1-23, August.
    7. Dalgaard, Carl-Johan & Strulik, Holger, 2011. "Energy distribution and economic growth," Resource and Energy Economics, Elsevier, vol. 33(4), pages 782-797.
    8. Rossana Mastrandrea & Rob ter Burg & Yuli Shan & Klaus Hubacek & Franco Ruzzenenti, 2022. "Scaling laws in global corporations as a benchmarking approach to assess environmental performance," Papers 2206.03148, arXiv.org, revised Jul 2023.
    9. Malevergne, Y. & Saichev, A. & Sornette, D., 2013. "Zipf's law and maximum sustainable growth," Journal of Economic Dynamics and Control, Elsevier, vol. 37(6), pages 1195-1212.
    10. Hendriks, A. Jan, 2007. "The power of size: A meta-analysis reveals consistency of allometric regressions," Ecological Modelling, Elsevier, vol. 205(1), pages 196-208.
    11. Ramos, Arturo & Sanz-Gracia, Fernando, 2015. "US city size distribution revisited: Theory and empirical evidence," MPRA Paper 64051, University Library of Munich, Germany.
    12. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    13. Guo, Liangzhu & Lou, Xiaodan & Shi, Peiteng & Wang, Jun & Huang, Xiaohan & Zhang, Jiang, 2015. "Flow distances on open flow networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 235-248.
    14. Song, Dong-Ming & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2009. "Statistical properties of world investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2450-2460.
    15. Wang, Jian & Song, Weiguo & Zheng, Hongyang & Telesca, Luciano, 2010. "Temporal scaling behavior of human-caused fires and their connection to relative humidity of the atmosphere," Ecological Modelling, Elsevier, vol. 221(1), pages 85-89.
    16. Liu, Chuang & Zhou, Wei-Xing & Yuan, Wei-Kang, 2010. "Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2675-2681.
    17. Mitchell G Newberry & Daniel B Ennis & Van M Savage, 2015. "Testing Foundations of Biological Scaling Theory Using Automated Measurements of Vascular Networks," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
    18. Zachary P Neal, 2018. "The urban metabolism of airline passengers: Scaling and sustainability," Urban Studies, Urban Studies Journal Limited, vol. 55(1), pages 212-225, January.
    19. Jiang Zhang & Lingfei Wu, 2013. "Allometry and Dissipation of Ecological Flow Networks," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    20. Zuzana Starostová & Marek Konarzewski & Jan Kozłowski & Lukáš Kratochvíl, 2013. "Ontogeny of Metabolic Rate and Red Blood Cell Size in Eyelid Geckos: Species Follow Different Paths," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:448:y:2016:i:c:p:196-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.