IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v212y2008i3p292-303.html
   My bibliography  Save this article

Marine aquaculture off Sardinia Island (Italy): Ecosystem effects evaluated through a trophic mass-balance model

Author

Listed:
  • Díaz López, Bruno
  • Bunke, Mandy
  • Bernal Shirai, Julia Andrea

Abstract

Marine aquaculture is an important growing worldwide industry. An ecosystem approach to study the effects of aquaculture on the Aranci Bay (Sardinia, Italy) was implemented by using a trophic mass-balance model in order to estimate the potential effects of finfish aquaculture and, therefore, to identify the species playing a key-role in ecosystem. Additionally, this study was used to evaluate the conflict between top predators and aquaculture. Mass-balance models were built using Ecopath software to characterize and compare the present state of the ecosystem versus a reconstructed past model representing the bay before the start of aquaculture activities. This modelling approach to the study of the fish farm activities in Aranci Bay has shown its appropriateness to describe the modifications induced, at an ecosystem level, by the nutrient loading into the area. Increased nutrient loading into the fish farm area may result in greater biological activity and may induce a strong coupling between the pelagic and benthic subsystems. Based on the results, the possible effect of top predators in the fish farm activities is not substantial. Furthermore, the use of mass-balance models can provide important additional information, complementary to the normal environmental assessment impact studies, before starting fish farm activities in an area.

Suggested Citation

  • Díaz López, Bruno & Bunke, Mandy & Bernal Shirai, Julia Andrea, 2008. "Marine aquaculture off Sardinia Island (Italy): Ecosystem effects evaluated through a trophic mass-balance model," Ecological Modelling, Elsevier, vol. 212(3), pages 292-303.
  • Handle: RePEc:eee:ecomod:v:212:y:2008:i:3:p:292-303
    DOI: 10.1016/j.ecolmodel.2007.10.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007005571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.10.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christensen, V. & Pauly, D. (eds.), 1993. "Trophic models of aquatic ecosystems," Monographs, The WorldFish Center, number 8432, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiara Paoli & Paolo Povero & Ilaria Rigo & Giulia Dapueto & Rachele Bordoni & Paolo Vassallo, 2022. "Two Sides of the Same Coin: A Theoretical Framework for Strong Sustainability in Marine Protected Areas," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
    2. Johnson, Galen A. & Niquil, Nathalie & Asmus, Harald & Bacher, Cédric & Asmus, Ragnhild & Baird, Daniel, 2009. "The effects of aggregation on the performance of the inverse method and indicators of network analysis," Ecological Modelling, Elsevier, vol. 220(23), pages 3448-3464.
    3. Deehr, Rebecca A. & Luczkovich, Joseph J. & Hart, Kevin J. & Clough, Lisa M. & Johnson, Beverly J. & Johnson, Jeffrey C., 2014. "Using stable isotope analysis to validate effective trophic levels from Ecopath models of areas closed and open to shrimp trawling in Core Sound, NC, USA," Ecological Modelling, Elsevier, vol. 282(C), pages 1-17.
    4. Paoli, C. & Povero, P. & Burgos, E. & Dapueto, G. & Fanciulli, G. & Massa, F. & Scarpellini, P. & Vassallo, P., 2018. "Natural capital and environmental flows assessment in marine protected areas: The case study of Liguria region (NW Mediterranean Sea)," Ecological Modelling, Elsevier, vol. 368(C), pages 121-135.
    5. Wang, Ying & Duan, Lijie & Li, Shiyu & Zeng, Zeyu & Failler, Pierre, 2015. "Modeling the effect of the seasonal fishing moratorium on the Pearl River Estuary using ecosystem simulation," Ecological Modelling, Elsevier, vol. 312(C), pages 406-416.
    6. Bayle-Sempere, Just T. & Arreguín-Sánchez, Francisco & Sanchez-Jerez, Pablo & Salcido-Guevara, Luis A. & Fernandez-Jover, Damián & Zetina-Rejón, Manuel J., 2013. "Trophic structure and energy fluxes around a Mediterranean fish farm," Ecological Modelling, Elsevier, vol. 248(C), pages 135-147.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Booth, Shawn & Walters, William J & Steenbeek, Jeroen & Christensen, Villy & Charmasson, Sabine, 2020. "An Ecopath with Ecosim model for the Pacific coast of eastern Japan: Describing the marine environment and its fisheries prior to the Great East Japan earthquake," Ecological Modelling, Elsevier, vol. 428(C).
    2. Rochette, S. & Lobry, J. & Lepage, M. & Boët, Ph., 2009. "Dealing with uncertainty in qualitative models with a semi-quantitative approach based on simulations. Application to the Gironde estuarine food web (France)," Ecological Modelling, Elsevier, vol. 220(2), pages 122-132.
    3. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    4. Rosas-Luis, R. & Salinas-Zavala, C.A. & Koch, V. & Luna, P. Del Monte & Morales-Zárate, M.V., 2008. "Importance of jumbo squid Dosidicus gigas (Orbigny, 1835) in the pelagic ecosystem of the central Gulf of California," Ecological Modelling, Elsevier, vol. 218(1), pages 149-161.
    5. Han, Jeong-Ho & Kumar, Hema K. & Lee, Jae Hoon & Zhang, Chang-Ik & Kim, Se-Wha & Lee, Jung-Ho & Kim, Sang Don & An, Kwang-Guk, 2011. "Integrative trophic network assessments of a lentic ecosystem by key ecological approaches of water chemistry, trophic guilds, and ecosystem health assessments along with an ECOPATH model," Ecological Modelling, Elsevier, vol. 222(19), pages 3457-3472.
    6. Ortiz, Marco & Berrios, Fernando & Campos, Leonardo & Uribe, Roberto & Ramirez, Alejandro & Hermosillo-Núñez, Brenda & González, Jorge & Rodriguez-Zaragoza, Fabián, 2015. "Mass balanced trophic models and short-term dynamical simulations for benthic ecological systems of Mejillones and Antofagasta bays (SE Pacific): Comparative network structure and assessment of human ," Ecological Modelling, Elsevier, vol. 309, pages 153-162.
    7. Nuttall, M.A. & Jordaan, A. & Cerrato, R.M. & Frisk, M.G., 2011. "Identifying 120 years of decline in ecosystem structure and maturity of Great South Bay, New York using the Ecopath modelling approach," Ecological Modelling, Elsevier, vol. 222(18), pages 3335-3345.
    8. Ullah, Md. Hadayet & Rashed-Un-Nabi, Md. & Al-Mamun, Md. Abdulla, 2012. "Trophic model of the coastal ecosystem of the Bay of Bengal using mass balance Ecopath model," Ecological Modelling, Elsevier, vol. 225(C), pages 82-94.
    9. Colléter, Mathieu & Valls, Audrey & Guitton, Jérôme & Gascuel, Didier & Pauly, Daniel & Christensen, Villy, 2015. "Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository," Ecological Modelling, Elsevier, vol. 302(C), pages 42-53.
    10. Dalsgaard, J.P.T. & Oficial, R.T., 1998. "Modeling and analyzing the agroecological performance of farms with ECOPATH," Monographs, The WorldFish Center, number 13080, April.
    11. Antony, P.J. & Dhanya, S. & Lyla, P.S. & Kurup, B.M. & Ajmal Khan, S., 2010. "Ecological role of stomatopods (mantis shrimps) and potential impacts of trawling in a marine ecosystem of the southeast coast of India," Ecological Modelling, Elsevier, vol. 221(21), pages 2604-2614.
    12. Katherine Velghe & Irene Gregory-Eaves, 2013. "Body Size Is a Significant Predictor of Congruency in Species Richness Patterns: A Meta-Analysis of Aquatic Studies," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-6, February.
    13. Hossain, Md. Monir & Matsuishi, Takashi & Arhonditsis, George, 2010. "Elucidation of ecosystem attributes of an oligotrophic lake in Hokkaido, Japan, using Ecopath with Ecosim (EwE)," Ecological Modelling, Elsevier, vol. 221(13), pages 1717-1730.
    14. Libralato, Simone & Solidoro, Cosimo, 2009. "Bridging biogeochemical and food web models for an End-to-End representation of marine ecosystem dynamics: The Venice lagoon case study," Ecological Modelling, Elsevier, vol. 220(21), pages 2960-2971.
    15. Perryman, Holly A. & Tarnecki, Joseph H. & Grüss, Arnaud & Babcock, Elizabeth A. & Sagarese, Skyler R. & Ainsworth, Cameron H. & Gray DiLeone, Alisha M., 2020. "A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts," Ecological Modelling, Elsevier, vol. 416(C).
    16. Torres, María Ángeles & Coll, Marta & Heymans, Johanna Jacomina & Christensen, Villy & Sobrino, Ignacio, 2013. "Food-web structure of and fishing impacts on the Gulf of Cadiz ecosystem (South-western Spain)," Ecological Modelling, Elsevier, vol. 265(C), pages 26-44.
    17. Natugonza, Vianny & Ogutu-Ohwayo, Richard & Musinguzi, Laban & Kashindye, Benedicto & Jónsson, Steingrímur & Valtysson, Hreidar Thor, 2016. "Exploring the structural and functional properties of the Lake Victoria food web, and the role of fisheries, using a mass balance model," Ecological Modelling, Elsevier, vol. 342(C), pages 161-174.
    18. Pauly, D. & Martosubroto, P. (eds.), 1996. "Baseline studies of biodiversity: the fish resources of Western Indonesia," Monographs, The WorldFish Center, number 10988, April.
    19. Panikkar, Preetha & Khan, M. Feroz, 2008. "Comparative mass-balanced trophic models to assess the impact of environmental management measures in a tropical reservoir ecosystem," Ecological Modelling, Elsevier, vol. 212(3), pages 280-291.
    20. Xu, Shannan & Chen, Zuozhi & Li, Chunhou & Huang, Xiaoping & Li, Shiyu, 2011. "Assessing the carrying capacity of tilapia in an intertidal mangrove-based polyculture system of Pearl River Delta, China," Ecological Modelling, Elsevier, vol. 222(3), pages 846-856.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:212:y:2008:i:3:p:292-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.