IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp1144-1151.html
   My bibliography  Save this article

Measuring improvements in industrial energy efficiency: A decomposition analysis applied to the UK

Author

Listed:
  • Norman, Jonathan B.

Abstract

Decomposition analysis can provide a useful efficiency metric for the industrial sector, it does so by separating the influence of changes in energy intensity from structural and activity changes. The activity refactorisation (AR) approach to decomposition analysis offers a potentially improved methodology, with a better correlation to real efficiency improvements. This is achieved through combining monetary and physical output data. Here the AR approach is compared to other methodologies for the United Kingdom industrial sector over the period 1997–2012. Even with limited availability of physical output data the AR approach was found to provide significantly different results to those obtained using only monetary output measures. When monetary output was the sole measure of activity, intensity (efficiency) improvements were overestimated. It is recommended that physical output data is supplied alongside energy demand and monetary output data in national accounts to better track efficiency improvements and allow such improved metrics to feed into decarbonisation policy discussions.

Suggested Citation

  • Norman, Jonathan B., 2017. "Measuring improvements in industrial energy efficiency: A decomposition analysis applied to the UK," Energy, Elsevier, vol. 137(C), pages 1144-1151.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:1144-1151
    DOI: 10.1016/j.energy.2017.04.163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217307107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    2. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    3. Freeman, Scott L. & Niefer, Mark J. & Roop, Joseph M., 1997. "Measuring industrial energy intensity: practical issues and problems," Energy Policy, Elsevier, vol. 25(7-9), pages 703-714.
    4. Farla, Jacco & Blok, Kornelis & Schipper, Lee, 1997. "Energy efficiency developments in the pulp and paper industry : A cross-country comparison using physical production data," Energy Policy, Elsevier, vol. 25(7-9), pages 745-758.
    5. Ramirez, C.A. & Blok, K. & Neelis, M. & Patel, M., 2006. "Adding apples and oranges: The monitoring of energy efficiency in the Dutch food industry," Energy Policy, Elsevier, vol. 34(14), pages 1720-1735, September.
    6. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    7. Worrell, Ernst & Price, Lynn & Martin, Nathan & Farla, Jacco & Schaeffer, Roberto, 1997. "Energy intensity in the iron and steel industry: a comparison of physical and economic indicators," Energy Policy, Elsevier, vol. 25(7-9), pages 727-744.
    8. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    9. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    10. Ang, B.W. & Mu, A.R. & Zhou, P., 2010. "Accounting frameworks for tracking energy efficiency trends," Energy Economics, Elsevier, vol. 32(5), pages 1209-1219, September.
    11. Farla, Jacco C.M & Blok, Kornelis, 2000. "The use of physical indicators for the monitoring of energy intensity developments in the Netherlands, 1980–1995," Energy, Elsevier, vol. 25(7), pages 609-638.
    12. Ang, B.W. & Wang, H., 2015. "Index decomposition analysis with multidimensional and multilevel energy data," Energy Economics, Elsevier, vol. 51(C), pages 67-76.
    13. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
    14. Farla, Jacco C. M. & Blok, Kornelis, 2001. "The quality of energy intensity indicators for international comparison in the iron and steel industry," Energy Policy, Elsevier, vol. 29(7), pages 523-543, June.
    15. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    16. Nanduri, Mallika & Nyboer, John & Jaccard, Mark, 2002. "Aggregating physical intensity indicators: results of applying the composite indicator approach to the Canadian industrial sector," Energy Policy, Elsevier, vol. 30(2), pages 151-163, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Román-Collado, Rocío & Economidou, Marina, 2021. "The role of energy efficiency in assessing the progress towards the EU energy efficiency targets of 2020: Evidence from the European productive sectors," Energy Policy, Elsevier, vol. 156(C).
    2. He, Yong & Liao, Nuo & Zhou, Ya, 2018. "Analysis on provincial industrial energy efficiency and its influencing factors in China based on DEA-RS-FANN," Energy, Elsevier, vol. 142(C), pages 79-89.
    3. Thomas, Samuel & Rosenow, Jan, 2020. "Drivers of increasing energy consumption in Europe and policy implications," Energy Policy, Elsevier, vol. 137(C).
    4. Liao, Nuo & He, Yong, 2018. "Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model," Energy, Elsevier, vol. 158(C), pages 782-795.
    5. Francesco Calise & Maria Vicidomini & Mário Costa & Qiuwang Wang & Poul Alberg Østergaard & Neven Duić, 2019. "Toward an Efficient and Sustainable Use of Energy in Industries and Cities," Energies, MDPI, vol. 12(16), pages 1-28, August.
    6. Lee, Junghwan & Kim, Jinsoo, 2023. "Are electric vehicles more efficient? A slacks-based data envelopment analysis for European road passenger transportation," Energy, Elsevier, vol. 279(C).
    7. Ali Faridzad & Mahta Ghafarian Ghadim, 2023. "CO2 intensity decomposition analysis in the Netherlands' manufacturing industry: an application of monetary and physical indicators," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8799-8817, August.
    8. Yushen Tian & Siqin Xiong & Xiaoming Ma, 2017. "Analysis of the Potential Impacts on China’s Industrial Structure in Energy Consumption," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    9. Junghwan Lee & Jinsoo Kim, 2021. "A Decomposition Analysis of the Korean Manufacturing Sector: Monetary vs. Physical Outputs," Sustainability, MDPI, vol. 13(11), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    2. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
    3. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
    4. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    5. Diakoulaki, D. & Mavrotas, G. & Orkopoulos, D. & Papayannakis, L., 2006. "A bottom-up decomposition analysis of energy-related CO2 emissions in Greece," Energy, Elsevier, vol. 31(14), pages 2638-2651.
    6. Bor, Yunchang Jeffrey, 2008. "Consistent multi-level energy efficiency indicators and their policy implications," Energy Economics, Elsevier, vol. 30(5), pages 2401-2419, September.
    7. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    8. Ang, B.W., 2006. "Monitoring changes in economy-wide energy efficiency: From energy-GDP ratio to composite efficiency index," Energy Policy, Elsevier, vol. 34(5), pages 574-582, March.
    9. Liang Chen & Zhifeng Yang & Bin Chen, 2013. "Decomposition Analysis of Energy-Related Industrial CO 2 Emissions in China," Energies, MDPI, vol. 6(5), pages 1-19, April.
    10. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    11. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    12. Hasanbeigi, Ali & de la Rue du Can, Stephane & Sathaye, Jayant, 2012. "Analysis and decomposition of the energy intensity of California industries," Energy Policy, Elsevier, vol. 46(C), pages 234-245.
    13. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    14. Hardt, Lukas & Owen, Anne & Brockway, Paul & Heun, Matthew K. & Barrett, John & Taylor, Peter G. & Foxon, Timothy J., 2018. "Untangling the drivers of energy reduction in the UK productive sectors: Efficiency or offshoring?," Applied Energy, Elsevier, vol. 223(C), pages 124-133.
    15. Torrie, Ralph D. & Stone, Christopher & Layzell, David B., 2016. "Understanding energy systems change in Canada: 1. Decomposition of total energy intensity," Energy Economics, Elsevier, vol. 56(C), pages 101-106.
    16. Xu, Jin-Hua & Fan, Ying & Yu, Song-Min, 2014. "Energy conservation and CO2 emission reduction in China's 11th Five-Year Plan: A performance evaluation," Energy Economics, Elsevier, vol. 46(C), pages 348-359.
    17. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Combining physical and economic output data to analyse energy and CO2 emissions trends in industry," Energy Policy, Elsevier, vol. 49(C), pages 422-429.
    18. Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.
    19. Schenk, Niels J. & Moll, Henri C., 2007. "The use of physical indicators for industrial energy demand scenarios," Ecological Economics, Elsevier, vol. 63(2-3), pages 521-535, August.
    20. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:1144-1151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.