IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v269y2013icp98-112.html
   My bibliography  Save this article

SWAT plant growth modification for improved modeling of perennial vegetation in the tropics

Author

Listed:
  • Strauch, Michael
  • Volk, Martin

Abstract

The Soil and Water Assessment Tool (SWAT) has been used for assessing the impact of land cover and land management changes on water resources for a wide range of scales and environmental conditions across the globe. However, originally designed for temperate regions, SWAT must be critically examined for its appropriate use in tropical watersheds. One major concern is the simulation of perennial tropical vegetation due to the absence of dormancy. While for temperate regions SWAT uses dormancy to terminate growing seasons of trees and perennials, seasonality in the tropics (wet and dry season) can only be represented by defining date or heat unit specific “plant” and “kill” operations which are fixed for every year of simulation. In this paper, we discuss these shortcomings and present an alternative approach to automatically initiate annual growing cycles based on changes in soil moisture. Furthermore, we propose a logistic leaf area index (LAI) decline function which approaches a user-defined minimum LAI instead of using the default function, which is not considering the minimum LAI. The modified SWAT model was tested based on MODIS LAI and evapotranspiration data for the Santa Maria/Torto watershed in Central Brazil, covered mostly by Cerrado (savanna) vegetation. Our model results show that the modified model can reasonably represent seasonal dynamics of the Cerrado biome. However, since the proposed changes are process-based but also allow flexible model settings (e.g. the beginning of growing cycles based on a soil moisture threshold adjustable for plant/land cover types), the modified plant growth module should be useful for large parts of the model community.

Suggested Citation

  • Strauch, Michael & Volk, Martin, 2013. "SWAT plant growth modification for improved modeling of perennial vegetation in the tropics," Ecological Modelling, Elsevier, vol. 269(C), pages 98-112.
  • Handle: RePEc:eee:ecomod:v:269:y:2013:i:c:p:98-112
    DOI: 10.1016/j.ecolmodel.2013.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013004134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santosh Thampi & Kolladi Raneesh & T. Surya, 2010. "Influence of Scale on SWAT Model Calibration for Streamflow in a River Basin in the Humid Tropics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4567-4578, December.
    2. Philip W. Gassman & Jimmy R. Williams & Verel W. Benson & R. César Izaurralde & Larry M. Hauck & C. Allan Jones & Jay D. Atwood & James Kiniry & Joan D. Flowers, 2005. "Historical Development and Applications of the EPIC and APEX Models," Center for Agricultural and Rural Development (CARD) Publications 05-wp397, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    3. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    4. Plesca, I. & Timbe, E. & Exbrayat, J.-F. & Windhorst, D. & Kraft, P. & Crespo, P. & Vaché, K.B. & Frede, H.-G. & Breuer, L., 2012. "Model intercomparison to explore catchment functioning: Results from a remote montane tropical rainforest," Ecological Modelling, Elsevier, vol. 239(C), pages 3-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Sun & Lizhe Yang & Lu Hao & Di Fang & Kailun Jin & Xiaolin Huang, 2017. "Hydrological Effects of Vegetation Cover Degradation and Environmental Implications in a Semiarid Temperate Steppe, China," Sustainability, MDPI, vol. 9(2), pages 1-20, February.
    2. Lee, Sangchul & Qi, Junyu & McCarty, Gregory W. & Anderson, Martha & Yang, Yun & Zhang, Xuesong & Moglen, Glenn E. & Kwak, Dooahn & Kim, Hyunglok & Lakshmi, Venkataraman & Kim, Seongyun, 2022. "Combined use of crop yield statistics and remotely sensed products for enhanced simulations of evapotranspiration within an agricultural watershed," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Lekarkar, Katoria & Nkwasa, Albert & Villani, Lorenzo & van Griensven, Ann, 2024. "Localizing agricultural impacts of 21st century climate pathways in data scarce catchments: A case study of the Nyando catchment, Kenya," Agricultural Water Management, Elsevier, vol. 294(C).
    4. Haas, Henrique & Kalin, Latif & Yen, Haw, 2024. "Improved forest canopy evaporation leads to better predictions of ecohydrological processes," Ecological Modelling, Elsevier, vol. 489(C).
    5. Čerkasova, Natalja & White, Michael & Arnold, Jeffrey & Bieger, Katrin & Allen, Peter & Gao, Jungang & Gambone, Marilyn & Meki, Manyowa & Kiniry, James & Gassman, Philip W., 2023. "Field scale SWAT+ modeling of corn and soybean yields for the contiguous United States: National Agroecosystem Model Development," Agricultural Systems, Elsevier, vol. 210(C).
    6. Guanghui Li & Lei Chang & Haoye Li & Yuefen Li, 2023. "Modeling the Impact of Land Use Optimization on Non-Point Source Pollution: Evidence from Chinese Reservoir Watershed," Land, MDPI, vol. 13(1), pages 1-17, December.
    7. Michael Strauch & Rohini Kumar & Stephanie Eisner & Mark Mulligan & Julia Reinhardt & William Santini & Tobias Vetter & Jan Friesen, 2017. "Adjustment of global precipitation data for enhanced hydrologic modeling of tropical Andean watersheds," Climatic Change, Springer, vol. 141(3), pages 547-560, April.
    8. Lan Thanh Ha & Wim G. M. Bastiaanssen, 2023. "Determination of Spatially-Distributed Hydrological Ecosystem Services (HESS) in the Red River Delta Using a Calibrated SWAT Model," Sustainability, MDPI, vol. 15(7), pages 1-24, April.
    9. Strehmel, Alexander & Jewett, Amy & Schuldt, Ronja & Schmalz, Britta & Fohrer, Nicola, 2016. "Field data-based implementation of land management and terraces on the catchment scale for an eco-hydrological modelling approach in the Three Gorges Region, China," Agricultural Water Management, Elsevier, vol. 175(C), pages 43-60.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Hongli & Jha, Manoj & Gassman, Philip W. & Parcel, Joshua D., 2007. "A Recent Trend in Ecological Economic Research: Quantifying the Benefits and Costs of Improving Ecosystem Services," ISU General Staff Papers 200701010800001812, Iowa State University, Department of Economics.
    2. Rossetto, Rudy & De Filippis, Giovanna & Triana, Federico & Ghetta, Matteo & Borsi, Iacopo & Schmid, Wolfgang, 2019. "Software tools for management of conjunctive use of surface- and ground-water in the rural environment: integration of the Farm Process and the Crop Growth Module in the FREEWAT platform," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    3. Everton Rocha & Maria Calijuri & Aníbal Santiago & Leonardo Assis & Luna Alves, 2012. "The Contribution of Conservation Practices in Reducing Runoff, Soil Loss, and Transport of Nutrients at the Watershed Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3831-3852, October.
    4. Stefan Koch & Andreas Bauwe & Bernd Lennartz, 2013. "Application of the SWAT Model for a Tile-Drained Lowland Catchment in North-Eastern Germany on Subbasin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 791-805, February.
    5. Halecki, Wiktor & Kruk, Edyta & Ryczek, Marek, 2018. "Loss of topsoil and soil erosion by water in agricultural areas: A multi-criteria approach for various land use scenarios in the Western Carpathians using a SWAT model," Land Use Policy, Elsevier, vol. 73(C), pages 363-372.
    6. Lychuk, Taras E. & Hill, Robert L. & Izaurralde, Roberto C. & Momen, Bahram & Thomson, Allison M., 2021. "Evaluation of climate change impacts and effectiveness of adaptation options on nitrate loss, microbial respiration, and soil organic carbon in the Southeastern USA," Agricultural Systems, Elsevier, vol. 193(C).
    7. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    8. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    9. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    10. Medwid, Laura J. & Lambert, Dayton M. & Clark, Christopher D. & Hawkins, Shawn A. & McClellan, Hannah A., 2016. "Estimating Soil Loss Abatement Curves with Primary Survey Data and Hydrologic Models: An Empirical Example for Livestock Production in an East Tennessee Watershed," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230052, Southern Agricultural Economics Association.
    11. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    12. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    13. Negar Tayebzadeh Moghadam & Karim C. Abbaspour & Bahram Malekmohammadi & Mario Schirmer & Ahmad Reza Yavari, 2021. "Spatiotemporal Modelling of Water Balance Components in Response to Climate and Landuse Changes in a Heterogeneous Mountainous Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 793-810, February.
    14. Yates, Andrew J. & Doyle, Martin W. & Rigby, J.R. & Schnier, Kurt E., 2013. "Market power, private information, and the optimal scale of pollution permit markets with application to North Carolina's Neuse River," Resource and Energy Economics, Elsevier, vol. 35(3), pages 256-276.
    15. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    16. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    17. S. K. Aryal & S. Ashbolt & B. S. McIntosh & K. P. Petrone & S. Maheepala & R. K. Chowdhury & T. Gardener & R. Gardiner, 2016. "Assessing and Mitigating the Hydrological Impacts of Urbanisation in Semi-Urban Catchments Using the Storm Water Management Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5437-5454, November.
    18. Liem Tran & Robert O’Neill & Elizabeth Smith & Randall Bruins & Carol Harden, 2013. "Application of Hierarchy Theory to Cross-Scale Hydrologic Modeling of Nutrient Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1601-1617, March.
    19. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    20. Prem B. Parajuli & Priyantha Jayakody & Ying Ouyang, 2018. "Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 985-996, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:269:y:2013:i:c:p:98-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.