IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v269y2013icp51-60.html
   My bibliography  Save this article

Evaluation of modeling of water ecohydrologic dynamics in soil–root system

Author

Listed:
  • Kumar, R.
  • Jat, M.K.
  • Shankar, V.

Abstract

Soil water movement due to root water uptake is a key process for plant growth and transport of water in the soil plant system. The accuracy of prediction extraction rate by plants depends on selection of proper mathematical models. The water uptake by plant roots has been simulated both at the microscopic and macroscopic levels. The microscopic approach requires detailed information about the dynamic geometry of the plant root system that is practically not available. In the macroscopic approach, a sink term, representing water extraction by plant roots is included in the dynamic water flow equation and the spatial and temporal uptake is controlled by the soil moisture and the plant demand. Different pattern of moisture uptake including constant, linear and exponential are available in various models. Relevant literature points out that a non-linear, exponential and logarithmic macroscopic root water uptake model is popular due to their improved prediction efficiency. In this paper most commonly used models which are suitable for the estimation of moisture uptake by plants in different agro-climatic regions are reviewed and a field study of macroscopic model has been given. Model predicted soil-moisture parameters i.e., moisture depletion, moisture status at various depths and soil moisture profile in root zone are compared with experimental results.

Suggested Citation

  • Kumar, R. & Jat, M.K. & Shankar, V., 2013. "Evaluation of modeling of water ecohydrologic dynamics in soil–root system," Ecological Modelling, Elsevier, vol. 269(C), pages 51-60.
  • Handle: RePEc:eee:ecomod:v:269:y:2013:i:c:p:51-60
    DOI: 10.1016/j.ecolmodel.2013.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013004195
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Skaggs, Todd H. & van Genuchten, Martinus Th. & Shouse, Peter J. & Poss, James A., 2006. "Macroscopic approaches to root water uptake as a function of water and salinity stress," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 140-149, November.
    2. Green, Steve R. & Kirkham, M.B. & Clothier, Brent E., 2006. "Root uptake and transpiration: From measurements and models to sustainable irrigation," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 165-176, November.
    3. Clemente, R. S. & Jong, R. De & Hayhoe, H. N. & Reynolds, W. D. & Hares, M., 1994. "Testing and comparison of three unsaturated soil water flow models," Agricultural Water Management, Elsevier, vol. 25(2), pages 135-152, April.
    4. Šimůnek, Jiří & Hopmans, Jan W., 2009. "Modeling compensated root water and nutrient uptake," Ecological Modelling, Elsevier, vol. 220(4), pages 505-521.
    5. Kang, Shaozhong & Zhang, Fucang & Zhang, Jianhua, 2001. "A simulation model of water dynamics in winter wheat field and its application in a semiarid region," Agricultural Water Management, Elsevier, vol. 49(2), pages 115-129, July.
    6. Wesseling, J.G. & Feddes, R.A., 2006. "Assessing crop water productivity from field to regional scale," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 30-39, November.
    7. Passioura, J. B., 1983. "Roots and drought resistance," Agricultural Water Management, Elsevier, vol. 7(1-3), pages 265-280, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Momii, Kazuro & Hiyama, Hiroki & Takeuchi, Shinichi, 2021. "Field sugarcane transpiration based on sap flow measurements and root water uptake simulations: Case study on Tanegashima Island, Japan," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Turner, Benjamin L. & Kodali, Srinadh, 2020. "Soil system dynamics for learning about complex, feedback-driven agricultural resource problems: model development, evaluation, and sensitivity analysis of biophysical feedbacks," Ecological Modelling, Elsevier, vol. 428(C).
    3. Ruirui Huang & Hongzhen Ni & Genfa Chen & Lijuan Du & Yuepeng Zhou, 2022. "Refined Allocation of Water Resources in Pishihang Irrigation Area by Joint Utilization of Multiple Water Sources," Sustainability, MDPI, vol. 14(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonkar, Ickkshaanshu & Kotnoor, Hari Prasad & Sen, Sumit, 2019. "Estimation of root water uptake and soil hydraulic parameters from root zone soil moisture and deep percolation," Agricultural Water Management, Elsevier, vol. 222(C), pages 38-47.
    2. Shouse, Peter J. & Ayars, James E. & Simunek, Jirí, 2011. "Simulating root water uptake from a shallow saline groundwater resource," Agricultural Water Management, Elsevier, vol. 98(5), pages 784-790, March.
    3. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    4. Margarita A. Petoussi & Nicolas Kalogerakis, 2023. "Mathematical Modeling of Pilot Scale Olive Mill Wastewater Phytoremediation Units," Sustainability, MDPI, vol. 15(11), pages 1-36, May.
    5. Fabio V. Difonzo & Costantino Masciopinto & Michele Vurro & Marco Berardi, 2021. "Shooting the Numerical Solution of Moisture Flow Equation with Root Water Uptake Models: A Python Tool," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2553-2567, June.
    6. Ramos, Tiago B. & Oliveira, Ana R. & Darouich, Hanaa & Gonçalves, Maria C. & Martínez-Moreno, Francisco J. & Rodríguez, Mario Ramos & Vanderlinden, Karl & Farzamian, Mohammad, 2023. "Field-scale assessment of soil water dynamics using distributed modeling and electromagnetic conductivity imaging," Agricultural Water Management, Elsevier, vol. 288(C).
    7. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    8. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    9. Thomas, Anooja & Yadav, Brijesh Kumar & Šimůnek, Jiří, 2024. "Water uptake by plants under nonuniform soil moisture conditions: A comprehensive numerical and experimental analysis," Agricultural Water Management, Elsevier, vol. 292(C).
    10. Bastiaanssen, W.G.M. & Allen, R.G. & Droogers, P. & D'Urso, G. & Steduto, P., 2007. "Twenty-five years modeling irrigated and drained soils: State of the art," Agricultural Water Management, Elsevier, vol. 92(3), pages 111-125, September.
    11. Albasha, Rami & Mailhol, Jean-Claude & Cheviron, Bruno, 2015. "Compensatory uptake functions in empirical macroscopic root water uptake models – Experimental and numerical analysis," Agricultural Water Management, Elsevier, vol. 155(C), pages 22-39.
    12. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Alexandre, Carlos & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use, soil water balance and soil salinization risks of Mediterranean tree orchards in southern Portugal under current climate variability: Issues for salinity control and irrigation management," Agricultural Water Management, Elsevier, vol. 283(C).
    13. Ramos, T.B. & Simionesei, L. & Jauch, E. & Almeida, C. & Neves, R., 2017. "Modelling soil water and maize growth dynamics influenced by shallow groundwater conditions in the Sorraia Valley region, Portugal," Agricultural Water Management, Elsevier, vol. 185(C), pages 27-42.
    14. Tenreiro, Tomás R. & García-Vila, Margarita & Gómez, José A. & Jimenez-Berni, José A. & Fereres, Elías, 2020. "Water modelling approaches and opportunities to simulate spatial water variations at crop field level," Agricultural Water Management, Elsevier, vol. 240(C).
    15. Peters, Andre & Durner, Wolfgang & Iden, Sascha C., 2017. "Modified Feddes type stress reduction function for modeling root water uptake: Accounting for limited aeration and low water potential," Agricultural Water Management, Elsevier, vol. 185(C), pages 126-136.
    16. Kandelous, Maziar M. & Kamai, Tamir & Vrugt, Jasper A. & Šimůnek, Jiří & Hanson, Blaine & Hopmans, Jan W., 2012. "Evaluation of subsurface drip irrigation design and management parameters for alfalfa," Agricultural Water Management, Elsevier, vol. 109(C), pages 81-93.
    17. Liu, Rui-Xian & Zhou, Zhi-Guo & Guo, Wen-Qi & Chen, Bing-Lin & Oosterhuis, Derrick M., 2008. "Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants," Agricultural Water Management, Elsevier, vol. 95(11), pages 1261-1270, November.
    18. Barnard, J.H. & van Rensburg, L.D. & Bennie, A.T.P. & du Preez, C.C., 2013. "Simulating water uptake of irrigated field crops from non-saline water table soils: Validation and application of the model SWAMP," Agricultural Water Management, Elsevier, vol. 126(C), pages 19-32.
    19. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    20. Gao, Zhaoquan & Fan, Jiangchuan & Li, Zhiqiang, 2021. "Dynamic simulation water storage of different parts in peach tree under drought stress," Agricultural Water Management, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:269:y:2013:i:c:p:51-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.