IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v268y2013icp1-8.html
   My bibliography  Save this article

Do indirect interactions always contribute to net indirect facilitation?

Author

Listed:
  • Xiao, Sa
  • Michalet, Richard

Abstract

Indirect facilitation theory assumes that the addition of species in complex communities should decrease competitive interactions through the emergence of positive indirect effects among competitors. However, experiments conducted in communities have rarely observed a net indirect facilitation. We hypothesize that this may be due to the likely occurrence of negative indirect interactions that were overlooked in indirect facilitation theory. We used a spatially explicit modeling approach to quantify indirect effects and net interactions occurring within a system of three competitors. In contrast to field experiments our modeling approach allows quantifying positive indirect effects since their calculation needs to be done in absence of direct negative effects. We showed the existence in a system of three competitors of two negative indirect interactions, in addition to the positive one emphasized in indirect facilitation theory. We also made precise the conditions under which the balance of these three indirect interactions becomes negative and induces a competition enhancement and in turn no net indirect facilitation. The existence of negative indirect effects among competitors contributes to explain the rare occurrence of indirect facilitation in plant communities.

Suggested Citation

  • Xiao, Sa & Michalet, Richard, 2013. "Do indirect interactions always contribute to net indirect facilitation?," Ecological Modelling, Elsevier, vol. 268(C), pages 1-8.
  • Handle: RePEc:eee:ecomod:v:268:y:2013:i:c:p:1-8
    DOI: 10.1016/j.ecolmodel.2013.07.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013003864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.07.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fath, Brian D., 2007. "Network mutualism: Positive community-level relations in ecosystems," Ecological Modelling, Elsevier, vol. 208(1), pages 56-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patten, Bernard C. & Straškraba, Milan & Jørgensen, Sven E., 2011. "Ecosystems emerging. 5: Constraints," Ecological Modelling, Elsevier, vol. 222(16), pages 2945-2972.
    2. Xinhui Feng & Yan Li & Lu Zhang & Chuyu Xia & Er Yu & Jiayu Yang, 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis," Land, MDPI, vol. 11(9), pages 1-22, August.
    3. Aliyu, Murtala Bello & Mohd, Mohd Hafiz, 2021. "The interplay between mutualism, competition and dispersal promotes species coexistence in a multiple interactions type system," Ecological Modelling, Elsevier, vol. 452(C).
    4. Mingqi Zhang & Meirong Su & Weiwei Lu & Chunhua Su, 2015. "An Assessment of the Security of China’s Natural Gas Supply System Using Two Network Models," Energies, MDPI, vol. 8(12), pages 1-16, December.
    5. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    6. Zhang, Yan & Liu, Hong & Fath, Brian D., 2014. "Synergism analysis of an urban metabolic system: Model development and a case study for Beijing, China," Ecological Modelling, Elsevier, vol. 272(C), pages 188-197.
    7. Zhang, Yan & Li, Shengsheng & Fath, Brian D. & Yang, Zhifeng & Yang, Naijin, 2011. "Analysis of an urban energy metabolic system: Comparison of simple and complex model results," Ecological Modelling, Elsevier, vol. 223(1), pages 14-19.
    8. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    9. Zhang, Yan & Yang, Zhifeng & Fath, Brian D. & Li, Shengsheng, 2010. "Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 221(16), pages 1865-1879.
    10. María Jesús Ávila-Gutiérrez & Alejandro Martín-Gómez & Francisco Aguayo-González & Juan Ramón Lama-Ruiz, 2020. "Eco-Holonic 4.0 Circular Business Model to Conceptualize Sustainable Value Chain towards Digital Transition," Sustainability, MDPI, vol. 12(5), pages 1-32, March.
    11. Fath, Brian D. & Scharler, Ursula M. & Baird, Dan, 2013. "Dependence of network metrics on model aggregation and throughflow calculations: Demonstration using the Sylt–Rømø Bight Ecosystem," Ecological Modelling, Elsevier, vol. 252(C), pages 214-219.
    12. Patten, Bernard C., 2016. "Systems ecology and environmentalism: Getting the science right. Part II: The Janus Enigma Hypothesis," Ecological Modelling, Elsevier, vol. 335(C), pages 101-138.
    13. Cropp, Roger & Norbury, J., 2019. "Carrying capacity – A capricious construct," Ecological Modelling, Elsevier, vol. 401(C), pages 20-26.
    14. Roberto Cazzolla Gatti & Roger Koppl & Brian D. Fath & Stuart Kauffman & Wim Hordijk & Robert E. Ulanowicz, 2020. "On the emergence of ecological and economic niches," Journal of Bioeconomics, Springer, vol. 22(2), pages 99-127, July.
    15. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    16. Rozgonjuk, Dmitri & Schmitz, Florian & Kannen, Christopher & Montag, Christian, 2021. "Cognitive ability and personality: Testing broad to nuanced associations with a smartphone app," Intelligence, Elsevier, vol. 88(C).
    17. Coskun, Huseyin, 2018. "Static Ecological System Measures," OSF Preprints g4xzt, Center for Open Science.
    18. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    19. Zhu, Xueting & Mu, Xianzhong & Hu, Guangwen, 2019. "Ecological network analysis of urban energy metabolic system—A case study of Beijing," Ecological Modelling, Elsevier, vol. 404(C), pages 36-45.
    20. Duan, Cuncun & Chen, Bin, 2017. "Energy–water nexus of international energy trade of China," Applied Energy, Elsevier, vol. 194(C), pages 725-734.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:268:y:2013:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.