IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v401y2019icp20-26.html
   My bibliography  Save this article

Carrying capacity – A capricious construct

Author

Listed:
  • Cropp, Roger
  • Norbury, J.

Abstract

The concept of a carrying capacity of an environment for a population has been an effective way of introducing a connection between populations and their environment. This approach has been particularly effective in heuristic Lotka–Volterra models of competition and predation that provide a basis for theoretical considerations of population interactions. However, the concept has proved less useful for interactions such as mutualism.

Suggested Citation

  • Cropp, Roger & Norbury, J., 2019. "Carrying capacity – A capricious construct," Ecological Modelling, Elsevier, vol. 401(C), pages 20-26.
  • Handle: RePEc:eee:ecomod:v:401:y:2019:i:c:p:20-26
    DOI: 10.1016/j.ecolmodel.2019.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019301073
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fath, Brian D., 2007. "Network mutualism: Positive community-level relations in ecosystems," Ecological Modelling, Elsevier, vol. 208(1), pages 56-67.
    2. Cropp, Roger & Norbury, John, 2018. "Linking obligate mutualism models in an extended consumer-resource framework," Ecological Modelling, Elsevier, vol. 374(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aliyu, Murtala Bello & Mohd, Mohd Hafiz, 2021. "The interplay between mutualism, competition and dispersal promotes species coexistence in a multiple interactions type system," Ecological Modelling, Elsevier, vol. 452(C).
    2. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    3. María Jesús Ávila-Gutiérrez & Alejandro Martín-Gómez & Francisco Aguayo-González & Juan Ramón Lama-Ruiz, 2020. "Eco-Holonic 4.0 Circular Business Model to Conceptualize Sustainable Value Chain towards Digital Transition," Sustainability, MDPI, vol. 12(5), pages 1-32, March.
    4. Fath, Brian D. & Scharler, Ursula M. & Baird, Dan, 2013. "Dependence of network metrics on model aggregation and throughflow calculations: Demonstration using the Sylt–Rømø Bight Ecosystem," Ecological Modelling, Elsevier, vol. 252(C), pages 214-219.
    5. Roberto Cazzolla Gatti & Roger Koppl & Brian D. Fath & Stuart Kauffman & Wim Hordijk & Robert E. Ulanowicz, 2020. "On the emergence of ecological and economic niches," Journal of Bioeconomics, Springer, vol. 22(2), pages 99-127, July.
    6. Rozgonjuk, Dmitri & Schmitz, Florian & Kannen, Christopher & Montag, Christian, 2021. "Cognitive ability and personality: Testing broad to nuanced associations with a smartphone app," Intelligence, Elsevier, vol. 88(C).
    7. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    8. Coskun, Huseyin, 2018. "Dynamic Ecological System Measures," OSF Preprints j2pd3, Center for Open Science.
    9. Coskun, Huseyin, 2018. "Static Ecological System Analysis," OSF Preprints zqxc5, Center for Open Science.
    10. Yuting Wang & Lei Wang & Zhemin Li, 2020. "Dynamic Analysis of China’s Imported Raw Milk Powder Consumption," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    11. Ju, Yiyi, 2019. "Revealing the bilateral dependencies and policy implication of food production of Japan and China: From the perspective of Food-Energy-Water nexus," Ecological Modelling, Elsevier, vol. 391(C), pages 29-39.
    12. Baird, Dan & Fath, Brian D. & Ulanowicz, Robert E. & Asmus, Harald & Asmus, Ragnhild, 2009. "On the consequences of aggregation and balancing of networks on system properties derived from ecological network analysis," Ecological Modelling, Elsevier, vol. 220(23), pages 3465-3471.
    13. Chatterjee, Abheek & Layton, Astrid, 2020. "Mimicking nature for resilient resource and infrastructure network design," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    14. Xiao, Sa & Michalet, Richard, 2013. "Do indirect interactions always contribute to net indirect facilitation?," Ecological Modelling, Elsevier, vol. 268(C), pages 1-8.
    15. Gatti, Roberto Cazzolla & Hordijk, Wim & Kauffman, Stuart, 2017. "Biodiversity is autocatalytic," Ecological Modelling, Elsevier, vol. 346(C), pages 70-76.
    16. Lu, Weiwei & Su, Meirong & Fath, Brian D. & Zhang, Mingqi & Hao, Yan, 2016. "A systematic method of evaluation of the Chinese natural gas supply security," Applied Energy, Elsevier, vol. 165(C), pages 858-867.
    17. Fan, Yupeng & Qiao, Qi & Chen, Weiping, 2017. "Unified network analysis on the organization of an industrial metabolic system," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 9-16.
    18. Patten, Bernard C. & Straškraba, Milan & Jørgensen, Sven E., 2011. "Ecosystems emerging. 5: Constraints," Ecological Modelling, Elsevier, vol. 222(16), pages 2945-2972.
    19. Xinhui Feng & Yan Li & Lu Zhang & Chuyu Xia & Er Yu & Jiayu Yang, 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis," Land, MDPI, vol. 11(9), pages 1-22, August.
    20. Mingqi Zhang & Meirong Su & Weiwei Lu & Chunhua Su, 2015. "An Assessment of the Security of China’s Natural Gas Supply System Using Two Network Models," Energies, MDPI, vol. 8(12), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:401:y:2019:i:c:p:20-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.