IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v266y2013icp172-186.html
   My bibliography  Save this article

Exploring the role of fire, succession, climate, and weather on landscape dynamics using comparative modeling

Author

Listed:
  • Keane, Robert E.
  • Cary, Geoffrey J.
  • Flannigan, Mike D.
  • Parsons, Russell A.
  • Davies, Ian D.
  • King, Karen J.
  • Li, Chao
  • Bradstock, Ross A.
  • Gill, Malcolm

Abstract

An assessment of the relative importance of vegetation change and disturbance as agents of landscape change under current and future climates would (1) provide insight into the controls of landscape dynamics, (2) help inform the design and development of coarse scale spatially explicit ecosystem models such as Dynamic Global Vegetation Models (DGVMs), and (3) guide future land management and planning. However, quantification of landscape change from vegetation development and disturbance effects is difficult because of the large space and long time scales involved. Comparative simulation modeling experiments, using a suite of models to simulate a set of scenarios, can provide a platform for investigating landscape change over more ecologically appropriate time and space scales that control vegetation and disturbance. We implemented a multifactorial simulation experiment using five landscape fire succession models to explore the role of fire and vegetation development under various climates on a neutral landscape. The simulation experiment had four factors with two or three treatments each: (1) fire (fire and no fire), (2) succession (dynamic and static succession), (3) climate (historical, warm-wet, warm-dry), and (4) weather (constant, variable). We found that, under historical climates, succession changed more area annually than fire by factors of 1.2 to 34, but one model simulated more landscape change from fire (factor of 0.1). However, we also found that fire becomes more important in warmer future climates with factors decreasing to below zero for most models. We also found that there were few differences in simulation results between weather scenarios with low or high variability. Results from this study show that there will be a shift from vegetation processes that control today's landscape dynamics to fire processes under future warmer and drier climates, and this shift means that detailed representations of both succession and fire should be incorporated into models to realistically simulate interactions between disturbance and vegetation.

Suggested Citation

  • Keane, Robert E. & Cary, Geoffrey J. & Flannigan, Mike D. & Parsons, Russell A. & Davies, Ian D. & King, Karen J. & Li, Chao & Bradstock, Ross A. & Gill, Malcolm, 2013. "Exploring the role of fire, succession, climate, and weather on landscape dynamics using comparative modeling," Ecological Modelling, Elsevier, vol. 266(C), pages 172-186.
  • Handle: RePEc:eee:ecomod:v:266:y:2013:i:c:p:172-186
    DOI: 10.1016/j.ecolmodel.2013.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001300313X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    2. Meg A Krawchuk & Max A Moritz & Marc-André Parisien & Jeff Van Dorn & Katharine Hayhoe, 2009. "Global Pyrogeography: the Current and Future Distribution of Wildfire," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunbo Chen & Chi Zhang, 2017. "Projecting the CO 2 and Climatic Change Effects on the Net Primary Productivity of the Urban Ecosystems in Phoenix, AZ in the 21st Century under Multiple RCP (Representative Concentration Pathway) Sce," Sustainability, MDPI, vol. 9(8), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ameztegui, Aitor & Coll, Lluís & Messier, Christian, 2015. "Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones," Ecological Modelling, Elsevier, vol. 313(C), pages 84-93.
    2. Alexandra D Syphard & Timothy Sheehan & Heather Rustigian-Romsos & Kenneth Ferschweiler, 2018. "Mapping future fire probability under climate change: Does vegetation matter?," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    3. Clasen, Christian & Heurich, Marco & Glaesener, Laurent & Kennel, Eckhard & Knoke, Thomas, 2015. "What factors affect the survival of tree saplings under browsing, and how can a loss of admixed tree species be forecast?," Ecological Modelling, Elsevier, vol. 305(C), pages 1-9.
    4. Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Potterf, Maria & Lukkarinen, Jani & Snäll, Tord & Toraño-Caicoya, Astor & Mönkkönen, Mikko, 2022. "Sectoral policies cause incoherence in forest management and ecosystem service provisioning," Forest Policy and Economics, Elsevier, vol. 136(C).
    5. E. Stavros & John Abatzoglou & Donald McKenzie & Narasimhan Larkin, 2014. "Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States," Climatic Change, Springer, vol. 126(3), pages 455-468, October.
    6. Martín Senande-Rivera & Damián Insua-Costa & Gonzalo Miguez-Macho, 2022. "Spatial and temporal expansion of global wildland fire activity in response to climate change," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Erica A H Smithwick & Kusum J Naithani & Teri C Balser & William H Romme & Monica G Turner, 2012. "Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    8. Rupert Seidl & Dominik Thom & Markus Kautz & Dario Martin-Benito & Mikko Peltoniemi & Giorgio Vacchiano & Jan Wild & Davide Ascoli & Michal Petr & Juha Honkaniemi & Manfred J. Lexer & Volodymyr Trotsi, 2017. "Forest disturbances under climate change," Nature Climate Change, Nature, vol. 7(6), pages 395-402, June.
    9. Cardil, Adrián & Monedero, Santiago & Silva, Carlos Alberto & Ramirez, Joaquín, 2019. "Adjusting the rate of spread of fire simulations in real-time," Ecological Modelling, Elsevier, vol. 395(C), pages 39-44.
    10. Andrea Duane & Marc Castellnou & Lluís Brotons, 2021. "Towards a comprehensive look at global drivers of novel extreme wildfire events," Climatic Change, Springer, vol. 165(3), pages 1-21, April.
    11. Philip E Higuera & John T Abatzoglou & Jeremy S Littell & Penelope Morgan, 2015. "The Changing Strength and Nature of Fire-Climate Relationships in the Northern Rocky Mountains, U.S.A., 1902-2008," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    12. Lisa Holsinger & Robert Keane & Daniel Isaak & Lisa Eby & Michael Young, 2014. "Relative effects of climate change and wildfires on stream temperatures: a simulation modeling approach in a Rocky Mountain watershed," Climatic Change, Springer, vol. 124(1), pages 191-206, May.
    13. Lagergren, Fredrik & Jönsson, Anna Maria & Blennow, Kristina & Smith, Benjamin, 2012. "Implementing storm damage in a dynamic vegetation model for regional applications in Sweden," Ecological Modelling, Elsevier, vol. 247(C), pages 71-82.
    14. Moïse Pierre Exélis & Rosli Ramli & Rabha W. Ibrahim & Azarae Hj Idris, 2022. "Foraging Behaviour and Population Dynamics of Asian Weaver Ants: Assessing Its Potential as Biological Control Agent of the Invasive Bagworms Metisa plana (Lepidoptera: Psychidae) in Oil Palm Plantati," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    15. Massimiliano Agovino & Massimiliano Cerciello & Aniello Ferraro & Antonio Garofalo, 2021. "Spatial analysis of wildfire incidence in the USA: the role of climatic spillovers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6084-6105, April.
    16. Gupta, Rajit & Sharma, Laxmi Kant, 2019. "The process-based forest growth model 3-PG for use in forest management: A review," Ecological Modelling, Elsevier, vol. 397(C), pages 55-73.
    17. Irauschek, Florian & Barka, Ivan & Bugmann, Harald & Courbaud, Benoit & Elkin, Che & Hlásny, Tomáš & Klopcic, Matija & Mina, Marco & Rammer, Werner & Lexer, Manfred J, 2021. "Evaluating five forest models using multi-decadal inventory data from mountain forests," Ecological Modelling, Elsevier, vol. 445(C).
    18. Jönsson, Anna Maria & Lagergren, Fredrik, 2018. "Effects of climate and soil conditions on the productivity and defence capacity of Picea abies in Sweden—An ecosystem model assessment," Ecological Modelling, Elsevier, vol. 384(C), pages 154-167.
    19. Zhongwei Liu & Jonathan M. Eden & Bastien Dieppois & Matthew Blackett, 2022. "A global view of observed changes in fire weather extremes: uncertainties and attribution to climate change," Climatic Change, Springer, vol. 173(1), pages 1-20, July.
    20. Lorrillière, Romain & Couvet, Denis & Robert, Alexandre, 2012. "The effects of direct and indirect constraints on biological communities," Ecological Modelling, Elsevier, vol. 224(1), pages 103-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:266:y:2013:i:c:p:172-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.