IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v229y2012icp76-87.html
   My bibliography  Save this article

Eliciting expert knowledge to inform landscape modeling of conservation scenarios

Author

Listed:
  • Price, Jessica
  • Silbernagel, Janet
  • Miller, Nicholas
  • Swaty, Randy
  • White, Mark
  • Nixon, Kristina

Abstract

Conservation and land management organizations such as The Nature Conservancy are developing strategies to distribute conservation efforts over larger areas. Relative to fee-simple protection efforts, strategies that allow ecologically sustainable timber harvest and recreation activities, such as working forest conservation easements, should yield greater socioeconomic benefits (ecosystem services) with less investment per area without significantly compromising the conservation of biodiversity (ecological targets). At the same time, climate change may profoundly influence forest resilience to management strategies in the coming century. As a result, there are many possible scenarios for the future of our forests and significant uncertainty for practitioners and decision makers. Yet, monitoring efforts aimed at evaluating the effectiveness of conservation strategies span decades or longer, leading to a lag in knowledge transfer and delayed adaptive management.

Suggested Citation

  • Price, Jessica & Silbernagel, Janet & Miller, Nicholas & Swaty, Randy & White, Mark & Nixon, Kristina, 2012. "Eliciting expert knowledge to inform landscape modeling of conservation scenarios," Ecological Modelling, Elsevier, vol. 229(C), pages 76-87.
  • Handle: RePEc:eee:ecomod:v:229:y:2012:i:c:p:76-87
    DOI: 10.1016/j.ecolmodel.2011.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011004704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    2. ., 2005. "Future Challenges Facing Utility Industry Managers," Chapters, in: Public Utilities, chapter 16, Edward Elgar Publishing.
    3. Provencher, Louis & Forbis, Tara A. & Frid, Leonardo & Medlyn, Gary, 2007. "Comparing alternative management strategies of fire, grazing, and weed control using spatial modeling," Ecological Modelling, Elsevier, vol. 209(2), pages 249-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert W. Hoyer & Heejun Chang, 2014. "Development of Future Land Cover Change Scenarios in the Metropolitan Fringe, Oregon, U.S., with Stakeholder Involvement," Land, MDPI, vol. 3(1), pages 1-20, March.
    2. Martínez-Fernández, Julia & Esteve-Selma, Miguel Angel & Baños-González, Isabel & Carreño, Francisca & Moreno, Angeles, 2013. "Sustainability of Mediterranean irrigated agro-landscapes," Ecological Modelling, Elsevier, vol. 248(C), pages 11-19.
    3. Meyer, Spencer R. & Johnson, Michelle L. & Lilieholm, Robert J. & Cronan, Christopher S., 2014. "Development of a stakeholder-driven spatial modeling framework for strategic landscape planning using Bayesian networks across two urban-rural gradients in Maine, USA," Ecological Modelling, Elsevier, vol. 291(C), pages 42-57.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ameztegui, Aitor & Coll, Lluís & Messier, Christian, 2015. "Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones," Ecological Modelling, Elsevier, vol. 313(C), pages 84-93.
    2. Clasen, Christian & Heurich, Marco & Glaesener, Laurent & Kennel, Eckhard & Knoke, Thomas, 2015. "What factors affect the survival of tree saplings under browsing, and how can a loss of admixed tree species be forecast?," Ecological Modelling, Elsevier, vol. 305(C), pages 1-9.
    3. Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Potterf, Maria & Lukkarinen, Jani & Snäll, Tord & Toraño-Caicoya, Astor & Mönkkönen, Mikko, 2022. "Sectoral policies cause incoherence in forest management and ecosystem service provisioning," Forest Policy and Economics, Elsevier, vol. 136(C).
    4. Rau, E-Ping & Fischer, Fabian & Joetzjer, Émilie & Maréchaux, Isabelle & Sun, I Fang & Chave, Jérôme, 2022. "Transferability of an individual- and trait-based forest dynamics model: A test case across the tropics," Ecological Modelling, Elsevier, vol. 463(C).
    5. Haga, Chihiro & Hotta, Wataru & Inoue, Takahiro & Matsui, Takanori & Aiba, Masahiro & Owari, Toshiaki & Suzuki, Satoshi N. & Shibata, Hideaki & Morimoto, Junko, 2022. "Modeling Tree Recovery in Wind-Disturbed Forests with Dense Understory Species under Climate Change," Ecological Modelling, Elsevier, vol. 472(C).
    6. Fitts, Lucia A. & Fraser, Jacob S. & Miranda, Brian R. & Domke, Grant M. & Russell, Matthew B. & Sturtevant, Brian R., 2023. "An iterative site-scale approach to calibrate and corroborate successional processes within a forest landscape model," Ecological Modelling, Elsevier, vol. 477(C).
    7. Spitzley, Dinah & Prügl, Reinhard, 2017. "Deutschlands nächste Unternehmergeneration: Eine empirische Untersuchung der Einstellungen, Werte und Zukunftspläne," Studien, Stiftung Familienunternehmen / Foundation for Family Businesses, number 250012.
    8. Peringer, Alexander & Buttler, Alexandre & Gillet, François & Pătru-Stupariu, Ileana & Schulze, Kiowa A. & Stupariu, Mihai-Sorin & Rosenthal, Gert, 2017. "Disturbance-grazer-vegetation interactions maintain habitat diversity in mountain pasture-woodlands," Ecological Modelling, Elsevier, vol. 359(C), pages 301-310.
    9. Jafarov, Elchin E. & Loudermilk, Louise E. & Hiers, Kevin J. & Williams, Brett & Linn, Rodman & Jones, Chas & Hill, Samantha C. & Atchley, Adam L., 2021. "Linking habitat suitability with a longleaf pine-hardwood model: Building a species-predictive fire-land management framework," Ecological Modelling, Elsevier, vol. 440(C).
    10. Bastit, Félix & Brunette, Marielle & Montagné-Huck, Claire, 2023. "Pests, wind and fire: A multi-hazard risk review for natural disturbances in forests," Ecological Economics, Elsevier, vol. 205(C).
    11. Aggestam, Filip & Wolfslehner, Bernhard, 2018. "Deconstructing a complex future: Scenario development and implications for the forest-based sector," Forest Policy and Economics, Elsevier, vol. 94(C), pages 21-26.
    12. Montagné-Huck, Claire & Brunette, Marielle, 2018. "Economic analysis of natural forest disturbances: A century of research," Journal of Forest Economics, Elsevier, vol. 32(C), pages 42-71.
    13. Rupert Seidl & Dominik Thom & Markus Kautz & Dario Martin-Benito & Mikko Peltoniemi & Giorgio Vacchiano & Jan Wild & Davide Ascoli & Michal Petr & Juha Honkaniemi & Manfred J. Lexer & Volodymyr Trotsi, 2017. "Forest disturbances under climate change," Nature Climate Change, Nature, vol. 7(6), pages 395-402, June.
    14. Keane, Robert E. & McKenzie, Donald & Falk, Donald A. & Smithwick, Erica A.H. & Miller, Carol & Kellogg, Lara-Karena B., 2015. "Representing climate, disturbance, and vegetation interactions in landscape models," Ecological Modelling, Elsevier, vol. 309, pages 33-47.
    15. Bonneau, Mathieu & Johnson, Fred A. & Romagosa, Christina M., 2016. "Spatially explicit control of invasive species using a reaction–diffusion model," Ecological Modelling, Elsevier, vol. 337(C), pages 15-24.
    16. Lagergren, Fredrik & Jönsson, Anna Maria & Blennow, Kristina & Smith, Benjamin, 2012. "Implementing storm damage in a dynamic vegetation model for regional applications in Sweden," Ecological Modelling, Elsevier, vol. 247(C), pages 71-82.
    17. Caicoya, Astor Toraño & Poschenrieder, Werner & Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Mönkkönen, Mikko & Uhl, Enno & Vergarechea, Marta & Pretzsch, Hans, 2023. "Sectoral policies as drivers of forest management and ecosystems services: A case study in Bavaria, Germany," Land Use Policy, Elsevier, vol. 130(C).
    18. Moïse Pierre Exélis & Rosli Ramli & Rabha W. Ibrahim & Azarae Hj Idris, 2022. "Foraging Behaviour and Population Dynamics of Asian Weaver Ants: Assessing Its Potential as Biological Control Agent of the Invasive Bagworms Metisa plana (Lepidoptera: Psychidae) in Oil Palm Plantati," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    19. Bonneau, Mathieu & Martin, Julien & Peyrard, Nathalie & Rodgers, Leroy & Romagosa, Christina M. & Johnson, Fred A., 2019. "Optimal spatial allocation of control effort to manage invasives in the face of imperfect detection and misclassification," Ecological Modelling, Elsevier, vol. 392(C), pages 108-116.
    20. Gupta, Rajit & Sharma, Laxmi Kant, 2019. "The process-based forest growth model 3-PG for use in forest management: A review," Ecological Modelling, Elsevier, vol. 397(C), pages 55-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:229:y:2012:i:c:p:76-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.