IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v265y2013icp85-98.html
   My bibliography  Save this article

Using the language of sets to describe nested systems in emergy evaluations

Author

Listed:
  • Morandi, Fabiana
  • Campbell, Daniel E.
  • Pulselli, Riccardo M.
  • Bastianoni, Simone

Abstract

The language of set theory has been recently used to describe the emergy evaluation of a process. In this paper this mathematical language is used as a guide to evaluate the emergy of nested systems. We analyze a territorial system on multiple scales as an example of hierarchically nested systems. In this regard, we consider two levels of organization of a territorial system with particular attention to defining the relationships between the flows at each level and between the levels. Our method is designed to make quantifying the interactions among levels easier and more accurate.

Suggested Citation

  • Morandi, Fabiana & Campbell, Daniel E. & Pulselli, Riccardo M. & Bastianoni, Simone, 2013. "Using the language of sets to describe nested systems in emergy evaluations," Ecological Modelling, Elsevier, vol. 265(C), pages 85-98.
  • Handle: RePEc:eee:ecomod:v:265:y:2013:i:c:p:85-98
    DOI: 10.1016/j.ecolmodel.2013.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013002901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bastianoni, Simone & Morandi, Fabiana & Flaminio, Tommaso & Pulselli, Riccardo M. & Tiezzi, Elisa B.P., 2011. "Emergy and emergy algebra explained by means of ingenuous set theory," Ecological Modelling, Elsevier, vol. 222(16), pages 2903-2907.
    2. Brown, Mark T. & Ulgiati, Sergio, 2010. "Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline," Ecological Modelling, Elsevier, vol. 221(20), pages 2501-2508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morandi, Fabiana & Campbell, Daniel E. & Pulselli, Federico M. & Bastianoni, Simone, 2015. "Emergy evaluation of hierarchically nested systems: application to EU27, Italy and Tuscany and consequences for the meaning of emergy indicators," Ecological Modelling, Elsevier, vol. 315(C), pages 12-27.
    2. Zarbá, Lucía & Brown, Mark T., 2015. "Cycling emergy: computing emergy in trophic networks," Ecological Modelling, Elsevier, vol. 315(C), pages 37-45.
    3. Saladini, Fabrizio & Patrizi, Nicoletta & Pulselli, Federico M. & Marchettini, Nadia & Bastianoni, Simone, 2016. "Guidelines for emergy evaluation of first, second and third generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 221-227.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, XiaoHong & Hu, He & Zhang, Rong & Deng, ShiHuai, 2014. "Interactions between China׳s economy, energy and the air emissions and their policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 624-638.
    2. Zhang, XiaoHong & Cao, Jun & Li, JinRong & Deng, ShiHuai & Zhang, YanZong & Wu, Jun, 2015. "Influence of sewage treatment on China׳s energy consumption and economy and its performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1009-1018.
    3. Giannetti, B.F. & Ogura, Y. & Bonilla, S.H. & Almeida, C.M.V.B., 2011. "Accounting emergy flows to determine the best production model of a coffee plantation," Energy Policy, Elsevier, vol. 39(11), pages 7399-7407.
    4. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    5. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    6. Arbault, Damien & Rugani, Benedetto & Tiruta-Barna, Ligia & Benetto, Enrico, 2014. "A first global and spatially explicit emergy database of rivers and streams based on high-resolution GIS-maps," Ecological Modelling, Elsevier, vol. 281(C), pages 52-64.
    7. Dong, Xiaobin & Yang, Weikun & Ulgiati, Sergio & Yan, Maochao & Zhang, Xinshi, 2012. "The impact of human activities on natural capital and ecosystem services of natural pastures in North Xinjiang, China," Ecological Modelling, Elsevier, vol. 225(C), pages 28-39.
    8. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    9. Paolo Vassallo & Claudia Turcato & Ilaria Rigo & Claudia Scopesi & Andrea Costa & Matteo Barcella & Giulia Dapueto & Mauro Mariotti & Chiara Paoli, 2021. "Biophysical Accounting of Forests’ Value under Different Management Regimes: Conservation vs. Exploitation," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    10. Wang, Saige & Cao, Tao & Chen, Bin, 2017. "Urban energy–water nexus based on modified input–output analysis," Applied Energy, Elsevier, vol. 196(C), pages 208-217.
    11. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Baral, Nawa Raj & Wituszynski, David M. & Martin, Jay F. & Shah, Ajay, 2016. "Sustainability assessment of cellulosic biorefinery stillage utilization methods using emergy analysis," Energy, Elsevier, vol. 109(C), pages 13-28.
    13. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    14. Xin (Cissy) Ma & Xiaobo Xue & Alejandra González-Mejía & Jay Garland & Jennifer Cashdollar, 2015. "Sustainable Water Systems for the City of Tomorrow—A Conceptual Framework," Sustainability, MDPI, vol. 7(9), pages 1-35, September.
    15. Zarbá, Lucía & Brown, Mark T., 2015. "Cycling emergy: computing emergy in trophic networks," Ecological Modelling, Elsevier, vol. 315(C), pages 37-45.
    16. Zhang, XiaoHong & Wei, Ye & Li, Min & Deng, ShiHuai & Wu, Jun & Zhang, YanZong & Xiao, Hong, 2014. "Emergy evaluation of an integrated livestock wastewater treatment system," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 95-107.
    17. Kocjančič, Tina & Debeljak, Marko & Žgajnar, Jaka & Juvančič, Luka, 2018. "Incorporation of emergy into multiple-criteria decision analysis for sustainable and resilient structure of dairy farms in Slovenia," Agricultural Systems, Elsevier, vol. 164(C), pages 71-83.
    18. Jamali-Zghal, N. & Le Corre, O. & Lacarrière, B., 2014. "Mineral resource assessment: Compliance between emergy and exergy respecting Odum's hierarchy concept," Ecological Modelling, Elsevier, vol. 272(C), pages 208-219.
    19. Wang, Xiaolong & Li, Zhejin & Long, Pan & Yan, Lingling & Gao, Wangsheng & Chen, Yuanquan & Sui, Peng, 2017. "Sustainability evaluation of recycling in agricultural systems by emergy accounting," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 114-124.
    20. Liu, Xinyu & Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2016. "Comparing national environmental and economic performances through emergy sustainability indicators: Moving environmental ethics beyond anthropocentrism toward ecocentrism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1532-1542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:265:y:2013:i:c:p:85-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.